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Abstract 
 

Behavior of blue swimming crab for improving catch selectivity  
and efficiency of collapsible pot in Thailand 

 
 Blue swimming crab Portunus pelagicus is an important commercial species both 
for domestic and export markets in Thailand. Collapsible pot has recently become a major 
type of fishing gear in the Gulf of Thailand with the increased awareness of the immature 
sized crab catch. Other finfish and shellfish species are also captured as bycatch which is 
associated with discard problem. This study aimed to mitigate the impact of the crab pot 
fishery. 
 
The analysis of; pot operation, catches, bycatch, discard, and soak time 
 Field surveys were conducted by on-boarding the operations both for small- and 
commercial-scale boats in the upper Gulf of Thailand in 2006. The small-scale operates 
inshore (0.5-3.0 km) by one man operation, with individual pot setting of number of 
200-350 pots/boat. The commercial-scale operates offshore (>3km) by 5-8 crews with the 
equipment of hauler machine onboard, with long-line type setting of 1,500-5,000 pots/boat. 
The catch data collected from both types of fishing were analyzed in order to understand the 
CPUE, catch size/species composition, bycatch and discard by number. Catch performances 
of both types were also compared from the view point of operation strategies as fishing 
ground, operation method, soaking time, etc. Average CPUE for the small-scale operations 
was 2.81 crabs/pot, which was much higher than the commercial-scale of 0.26 crabs/pot. 
The composition of blue swimming crab for small-scale accounted for 66-92 % while 
39-51% for commercial-scale of the total catch. The average discard ratio for small- and 
commercial-scale operations were 0.30 and 0.50, whereas the average discard rate were 0.22 
and 0.30, respectively. The crab size caught for small-scale was much smaller than 
commercial scale. The bycatch for commercial-scale consisted of 19-21 species/operation. 
This was much higher compared with the bycatch for small-scale operation which consisted 
of 8-10 species/operation. The results showed that the bycatch for both types of operation 
require the mitigation measures for size and species selectivity improvement. 
 
Use of escape vents to improve size and species selectivity of collapsible pot for blue 
swimming crab in Thailand 
 Laboratory experiments were conducted for examining the modification possibility 
of the collapsible pot for the blue swimming crab by designing appropriate escape vents for 
shape, position and size to improve the size selectivity by reducing the catch of immature 
crabs. In laboratory observations, the nearly-square shaped vents of 35 mm height and 45 
mm length, located at the lower part of the side panel, showed the best performance to allow 
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the escape of immature size crabs, by the side-crawling escape behavior through the vents, 
with the selection carapace length (L50%) as 39.1, 44.4 and 48.7 mm CL for 40, 45 and 50 
mm vent length, respectively. Comparative fishing trials between conventional and vented 
pots with vents of 35×45 mm were conducted to examine the crab size and species 
selectivity. Use of the vented pots were found to reduce the number of immature crabs in the 
catch from 70.5% to 11.0% in average, while not affecting the catch efficiency of mature 
size crabs. The vented pots also showed a selective function for reducing the bycatch species 
in the comparative fishing trials. Some bycatch from the vented pot were reduced when 
compared with the conventional pot particularly for the bycatch of other species. 
 
Study on blue swimming crab behavior for understanding the capture process, and 
comparison of slope net mesh size for improving the pot catching efficiency 
 For a better understanding of the pot capture process for the blue swimming crab, 
behavior pattern of the crabs how they were entrapped through the entrance slope net with 
different mesh sizes was observed with a video camera in an experimental tank. The 
catching efficiency of the pot with smaller mesh sizes of 18 and 25 mm on slope net was 
compared with the conventional pot with a mesh size of 38 mm. The crabs (N=12) for the 
size range of 35.0-45.0 mm carapace length were used for the laboratory experiment. The 
time taken for the crabs to be entrapped from the first touch at the slope net tended to be 
reduced as the mesh size became smaller. Crawling patterns on the slope net with smaller 
mesh size were more likely to be straight forward than the conventional one. Three 
individuals gave up their attempts to enter the pot trough the slope net mesh size of 38 mm, 
while no individual gave up for 25 mm, and a single individual gave up for 18 mm. The 
capture process consisted of 4 stages; bait detection, approach, entry, and escape. The crabs 
passed through the slope net by crawling, and never returned back if they could reach the 
ending edge of the slope net. After being entrapped in pot, they fed, and then mostly crawled 
around the bottom panel and attempted to escape. They sometimes showed territorial 
behavior for keeping their own space in the pot.  
 
Comparative fishing trials between conventional and modified pots 
 Comparative fishing trials using 4 different types of pot; conventional, smaller 
mesh size (25 mm) at the slope net, smaller mesh size at the slope net with vents (19×38 and 
19×57 mm), were tested in the fishing ground of small scale pot fishery, 0.5-1.0 km from 
shore, 4-6 m depth, in the Gulf of Thailand on 19-20 Jan 2008. The vents were made by 
cutting the meshes at bottom side panel and strengthening the vent edges by binding with 
polyethylene twine. Thirty pots of each type were used, deployed individually, intervals of 
20-30 m, with 13-15 hrs soaking time. Compared with the conventional pot; the smaller 
mesh size at slope net pots showed the positive results to increase the catch number of blue 
swimming crab, however including the immature size crab and some bycatch species 
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particularly the crabs, such as smoothshelled swimming crab Charybdis affinis, 
square-shelled crab Galene bispinosa were also increased. The smaller mesh size at slope 
net for vented pots could reduce the number of bycatch while maintained the catch of blue 
swimming crab, particularly for 19×57 mm vents with the high retention of larger size of 
crabs. 
 
Simulated ghost fishing experiment for collapsible crab pot in Thailand 
 The collapsible pots can be accidentally lost at sea, and continue to catch target and 
non-target species. The ghost fishing study was conducted by quantified number of 
entrapped animals and estimating the mortality through the simulated experiment. Twelve 
collapsible pots were set individually on seabed at 4-6 m depths, approximately 0.8 km from 
coastline of Sriracha Fisheries Research Station, Thailand. Ghost fishing effects were 
monitored by scuba diving to observe the bait, pot conditions, species, and numbers of 
entrapped animals for one year from April 2006. The bait originally placed in the pots was 
consumed within 3 days after deployment. Toad fish Batrachus grunniens, black sea urchin 
Diadema setosum, and ridged swimming crab Charybdis natator were dominant catch 
species throughout the monitored period. CPUE of entrapped animals increased as days 
elapsed and reached the maximum by 135 days after deployment, then decreased as time 
passed. The simulated pots caught of 7.1 individuals of toad fish, 5.6 sea urchins and 5.5 
ridged swimming crabs/pot/year. Other 19 species were also entrapped such as spiral 
melongena, filefish, catfish, etc. Total number of killed animals was calculated as 20.1 
individuals/pot/year. Five pots continued to catch in the second year, which indicated that 
they have potential to keep the capture function for extended periods until losing the 
function due to accumulation of bio-fouling at the pot entrances. 
 
 This study revealed that difference of fishing ground between the small- and 
commercial-scale of the collapsible pot fishery targeting blue swimming in the Gulf of 
Thailand affected the catch patterns of the crab size and species composition, as well as the 
bycatch and discard aspects. The results also suggested the significant contribution for 
improving the crab size selectivity particularly for small-scale, and the species selectivity 
and catch efficiency particularly for commercial-scale fishery. These aspects can be 
improved if appropriate combination of escape vents and smaller mesh size at the slope net 
is used together with the consideration of the fishing ground selection. Ghost fishing is 
occurred if the pots are lost at sea. The determination of appropriate escape vents can also 
reduce the negative impacts on the marine ecosystem.  
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Chapter 1 

Introduction 

 

1.1 Introduction to blue swimming crab pot fishery in the Gulf of Thailand 

 Blue swimming crab Portunus pelagicus (Fig. 1.1(a)) is an important coastal 

species in Thailand both for the domestic and export markets, with an annual production of 

around 40,000 tons (Fisheries Statistics of Thailand, 2007), worth about US $ 50 million 

value. Collapsible pot (Fig. 1.1(b)), box shaped, 2 slits entrances with the size of 36×54×19 

cm is a major fishing gear type together with the bottom gillnet for catching the crab. The 

pot made from galvanized frame structure, covered with polyethylene green square shape 

net (modified from 38 mm diamond shape net). This fishing gear was introduced and 

transferred from Japan in 1981 (Okawara and Masthawee, 1981) and has been modified 

from the original design by Thai fisherman (smaller the pot size and changed the covered net 

from 25 mm red color to 38 mm green color). 

 

        

    (a)        (b) 

Fig. 1.1  Blue swimming crab (a), and collapsible crab pot with the size of 36×54×19 cm 

  (b). 

 

 After the introduction from Japan, the pot was accepted and has been widely used 

both in the Gulf of Thailand and Andaman Sea. Nowadays there are 2 types of the crab pot 
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fishing boat in the Gulf of Thailand; small scale (Fig. 1.2(a)) and commercial scale (Fig. 

1.2(b)). The small scale operates close to the shore (about 0.5-3.0 km) with the number of 

200-350 pots/boat, by individual setting and hauling by one man operation. The commercial 

scale operates far away from shore (>3km) with 5-8 crews onboard, by long-line type setting 

and hauling the pots by hauler machine with the number of 1,500-5,000 pots/boat or over, 

which has resulted in a decrease of catch per unit effort, and increased catch of smaller size 

blue swimming crab (Jindalikit, 2001). This trend requires the urgent mitigation measures 

for resource conservation together with the renovation of coastal environment, however, no 

practical success measures have so far been reported for the resource management and stock 

enhancement.  

 

     

        (a)       (b) 

Fig. 1.2  Blue swimming crab pot boats in Thailand; small scale (a), 250-350 pots, and 
  commercial scale (b), 1,500-5,000 pots onboard). 
 

1.2 Fishing gear selectivity 

 Most fishing gears, for example for trawl gears, are selective for the larger sizes, 

while some gears (gill nets) are selective for the certain length range only, thus excluding the 

capture of very small and very large fish. This property is called ‘gear selectivity’. It needs 

to be taken into account when we want to estimate the real size (or age) composition of the 

fish in the fishing area. At the same time, it is an important tool for fisheries managements 
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who, by regulating the minimum mesh sizes of the fishing fleet, can more or less determine 

the minimum sizes of the target species of the certain fisheries (Sparre and Venema, 1998). 

Fishing gear selectivity relies heavily on the mechanical selection of fish and their 

behavioral response to the gear during the capture process (Glass and Wardle, 1995). 

 Sustainable development of fisheries is the crucial strategy to achieve development 

of marine resources for food security and conservation of the aquatic environment for future 

generation (FAO, 1995). Size regulations and protection of species are emphasized in 

contemporary fisheries management. It is primarily important to harvest organisms of the 

desired species and size, decreasing unwanted bycatch which is currently discarded. These 

can be achieved by proper separation between retention and exclusion by fishing gear and 

methods (Matsuoka, 2001). 

 Selectivity is the function of fishing gear to harvest organisms of limited species 

and size ranges among populations that are encountered in fishing grounds. Fishing gear 

selectivity is therefore, composed of two character; 1) size selectivity, and 2) species 

selectivity (Matsuoka, 2001). A majority of passive fishing gear, such as gillnets, traps, pots, 

has modal selectivity curves, although sometimes the peaks are not distinctive. Active 

fishing gear, such as trawl and other seine nets of which selectivity is induced mainly by the 

function of filtering, has one-tail curves (Matsuoka, 2001). 

 Selectivity of the cage trap is complicated. This is attributed to the fact that 

organisms enter simply through a large opening (the entrance) but evacuate either through an 

exit (the entrance) or through both an exit and meshes, and that the phenomena for 

organisms to leave through an exit depends on behavioral differences among species.  

Selectivity curves of some pots are modal (Koike, 1979), however, it does not seem very 

sharp.  When organisms are dislocated mainly through meshes that are usually much 

smaller than the entrance, selectivity may have a flat mode, as being saturated. Exclusion of 

small organisms can be controlled by adding of an escape gap (Brown, 1982) 
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 Escape vents are used in some pot fisheries and the sizes of those vents may be 

tuned to maximize retention of large fish and escapement of small fish (Shepherd et al., 

2002). The information required to maximize efficiency for a pot fishery comprises either 

comparisons of differing set durations, or continuous data from which the nature of the 

pot–containment curve can be estimated (Zhou and Shirley, 1997a). 

 

1.3 Ghost fishing 

 Ghost fishing can be defined as the ability of fishing gear to continue fishing after 

all control of that gear is lost by the fisherman (Smolowitz, 1978a). It refers to derelict 

fishing gears either lost or abandoned which remain their capture function in water and 

continue to induce mortality of aquatic organisms without human control (Matsuoka, 2005). 

Gear may be lost for a variety of reasons including bad weathers, bottom snags, navigational 

collisions, faulty fishing methods, abandonment, human error, vandalism, and gear failure 

(Laist, 1995). Pot ghost fishing can occur through a variety of mechanism; auto-rebaiting, 

rebaiting by other species, attraction by living conspecifics or by the pot alone (Breen, 1990). 

The ghost fishing mortality rate is currently an intangible and remains of significant concern 

to both fishers and fisheries managers (Jennings and Kaiser, 1988). The lack of information 

relating to this phenomenon results from the incidents and difficulty in undertaking 

long-term studies in a realistic manner (Bullimore et al., 2001; Matsuoka, 2005). Pots ghost 

fishing, possibly the best information comes from underwater observations of simulated lost, 

and the studies short to long term must be carefully considered (Breen, 1990). 

 This study research aims to reduce the immature size of the blue swimming crab 

and bycatch from the collapsible crab pot, case study in the upper Gulf of Thailand, 

including modifications the pot that can improve the catch efficiency by understanding the 

crab behavioral response, and the impact of the pot ghost fishing also was investigated by 

simulated lost. 
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Chapter 2 

The analysis of; pot operation, catches, bycatch, discard, and soak time 

 

2.1 Introduction 

 Pots and traps are widely used to capture crustaceans and fishes (Miller, 1990; 

Cappo and Brown, 1996). Pots and traps may be baited or unbaited, depending on the target 

species. The capture process comprises attraction (unbaited traps presumably attract via their 

structure), approaches, entries, and exits (Fogarty and Addison, 1997). For several pot types, 

continuous data show that target species often may enter and depart from pots apparently at 

will (e.g. Jury et al., 2001). The catch rate of pots thus reflects the rate at which the target 

species enters and exits the pot, in relation to the timing of hauling. The capture process is 

complicated by the fact that entry and egress may be altered by presence or absence of prior 

entrants, the appropriate strategy for fishing therefore depends on the costs and benefits of 

setting and hauling, in relation to stock composition (Frusher and Hoenig, 2001).  

 Trap can be highly size and species selective and are both efficient and cost effective 

(Miller, 1990). These devices share with other forms of stationary gear (e.g. long-lines and 

gillnets), a passive made of capture in which the behavior of the species sought plays a 

dominant and critical role. Stationary fishing gears are typically sea fixed location and 

retrieved other variable immersion (soak) intervals. Immersion times can be very greatly in 

these fisheries and catch is typically not a linear function of the soak interval. These 

characteristics must be considered in the development of relative abundance indices base on 

standardize catch and effort series (Forgarty and Addison, 1997). 

 The fishing effort of a particular vessel is generally accepted as the product of the 

fishing power and an appropriate measure of fishing activity (Galbraith and Stewart, 1995). 

The parameters that measure the fishing power are known as ‘capacity parameters’ and 
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result from vessel and fishing gear characteristics. The activity measure may be expressed 

by the number of fishing trips, fishing time, duration of the trips, number of sets, which in 

turn depend on the vessel characteristics and fishing method (Parente, 2004). Fishing power 

is the ability of a fishing unit to catch fish (Galbraith and Stewart, 1995) but since 

calculating it in absolute terms is not possible, it has been defined as a relative measure.  

Relative fishing power may be defined as the ratio of the quantity caught by an individual 

vessel per unit fishing time to that by a vessel selected as a standard reference (Beverton and 

Holt, 1957). 

 Catch per pot has been used as an index of abundance during stock assessment 

studies of crustaceans, but it is greatly affected by many variables (Miller, 1990). Pot design 

and soaking time are known to influence the pot's capture efficiency because of the different 

physical parameters of the pot, such as volume, entrance type and number, or mesh size; and 

because the conditions in the pot change over time. As time elapses, the bait loses its 

attractiveness, and because of the growing presence of crabs inside the pot intimidating 

others trying to get in, the pot may become saturated. At this time, depending on retention 

characteristics of the pot, escape may play an important role (Zhou and Shirley, 1997a).  

 Over the past three decades, it has been recognized that bycatch and discard is one of 

the most significant issues effecting fisheries management (Saila, 1983; Alverson et al., 

1994). In this study, bycatch and discarded crab pot catches in different fishing area (inshore, 

offshore) in the Upper Gulf of Thailand were considered using data obtained from joining 

the operation with the crab pot fishermen for a consecutive year. As the information on the 

discarding procedure in the area were very limited, the main features of this process was 

presented, the quantities and qualities of discarded species were reported. Moreover, the 

CPUE according to the soaking time with the different retrieval method of commercial scale 

pot was examined. 
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2.2 Materials and Methods 

 The studies have been surveyed on board with Thai crab pot fishermen in their 

fishing grounds both small scale (Bang-pra Beach, Chonburi Province) and commercial 

scale boat in the upper Gulf of Thailand (Fig. 2.1). The catch data from collapsible pot 

fishing for the crab were analyzed for better understanding on the size/species composition, 

in order to improve the capture function of crab pot to reduce the bycatch of immature crab 

and discard species. Field surveys were conducted by on-boarding operations with the crab 

pot boats both for small and commercial scales in the upper Gulf of Thailand in 2006.  The 

catch data were analyzed to estimate CPUE and size/species compositions for understanding 

the discard problem with the results of discard rate and ratio. Discard ratio and discard rate 

by number were estimated by using these below formulas (Alverson et al., 1994); 

 

Discard ratio = Discards/Retentions 

Discard rate = Discards/(Discards + Retentions) 

Catch performance of small and commercial scale operations were also compared from the 

view point of operation strategy of fishing effort and setting site difference. 
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Fig. 2.1  The location of study area (     = small scale fishing ground,      = commercial      

   scale fishing ground). 

 

2.3 Results 

 2.3.1  Catch composition 

 Through out the study, the comparison of crab pot operation between small and 

commercial scale is shown in Table 2.1. Between both types of the pot fishing, only the pot 

was same but all others such as; the boat, bait, fishing ground, pot setting, soaking time, etc. 

were different. The pot numbers onboard had much different, only 200-350 pots/boat in 

small scale while can reach 5,000 pots/boat or more in commercial scale (Table 2.1) 

 The catch composition by number from a small scale boat operation (inshore fishing 

ground) is shown in Table 2.2. The majority catch was blue swimming crab, as 72.4-91.3%. 

Others species also were caught and being considered as bycatch, both commercial and no 

Upper Gulf of 
Thailand 
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commercial value. Ridged swimming crab Charybdis natator and smoothshelled crab 

Charybdis affinis were dominant bycatch species through out the study (Table 2.2). 

 The catch composition (by number) from a commercial scale boat operation 

(offshore fishing ground) is shown in Table 2.3. The majority catch was still blue swimming 

crab, but smaller numbers than small scale, as 21.2-51.6%. Others species also were caught 

and being considered as bycatch both commercial and no commercial value with larger 

numbers than small scale both in quantity and quality (species). Threadfin bream, mantis 

shrimp, grunter, filefish and octopus were dominant for commercial valuable species while 

squared-shelled crab, smoothshelled crab and goby were dominant for low/less valuable 

species (Table 2.3). 

 

Table 2.1 Comparison of crab pot boats and their operations in the upper Gulf of  

 Thailand 
 

 Small Scale Commercial Scale 

Boat size 

Engine 

No. of crews 

No. of pot 

Bait 

Fishing ground (from shore) 

Fishing depth 

Pot setting 

Pot interval 

Soak time 

Time used for shooting 

Time used for retrieving 

1.7 × 5 m 

5 HP 

1 

200-350 

trevally, croaker, others 

0.5-3 km 

3-8 m 

Individual 

20-25 m 

12-24 hrs (over night) 

1 hr/300 pots 

3 hrs/300 pots 

 

3 × 10 m 

168 HP 

5-10 

1,500-5,000 

tilapia 

>3 km 

15-30 m 

long-line (set) 

12-15 m 

3.5-12 hrs (day) 

1 hr/2,000 pots 

4.5 hrs/2,000 pots 
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Table 2.2  Catch composition (by number) from a small scale boat operations (inshore fishing ground) 

  Number of pot 

  295 299 366 366 367 367 

Species Scientific name 17 May 2006 18 May 2006 8 Dec 2006 9 Dec 2006 18 May 2007 19 May 2007 

  No. % No. %  No. %  No. % No. % No. % 

Blue swimming crab** Portunus pelagicus 1,135* 91.3 1,199* 85.9 1,109* 72.4 870* 65.5 734* 76.1 583* 75.0 

Ridged swimming crab** Charybdis natator 89 7.2 166 11.9 6 0.4 4 0.3 141 14.6 137 17.6 

Smoothshelled crab Charybdis affinis 3 0.2 9 0.6 389 25.4 428 32.2 44 4.6 35 4.5 

Flower moon crab Matuta planipes 3 0.2 5 0.4 4 0.3 1 0.1 1 0.1 1 0.1 

Filefish** Monacanthus chinensis 4 0.3 4 0.3   1 0.1 10 1.0 4 0.5 

Tripodfish 

Pseudotriacanthus 

strigilifer 1 0.1 1 0.1         

Spiral melongena** Pugilina cochlidium 6 0.5 4 0.3 5 0.3 7 0.5 11 1.1 2 0.3 

Star fish Astropecten sp. 1 0.1 3 0.2 14 0.9 14 1.1 5 0.5 2 0.3 

Hermit crab Calibanarius longitarsus 1 0.1 1 0.1    0.0 12 1.2 8 1.0 

Mangrove stone crab** Myomenippe hardwickii   2 0.1     2 0.2 3 0.4 

Cuttlefish* Sepia pharaonis   1 0.1     1 0.1   

Toad fish Batrachus grunniens     1 0.1     1 0.1 

Octopus* Octopus sp.     1 0.1 2 0.2     

Spinefoot* Siganus oramin     1 0.1 2 0.2     

Grunter* Terapon sp.         3 0.3 1 0.1 

Striped catfish* Plotosus lineatus     1* 0.1       

 Total 1,243 100 1,395 100 1,531 100 1,329 100 964 100 777 100 

* Indicate the number retained of species from each operation,  ** Indicate those species that have marketable value.  
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Table 2.3  Catch composition (by number) from commercial crab pot boat operations (offshore fishing ground) 

  Number of pot 2,013 2,117 2,120 1,687 1,698 

   8-Jan-2006 29-Apr-2006 5-May-2006 21-Sep-2006 26-May-2007 

   Catch Catch Catch Catch Catch 

No. Species Sci. Name No. %  No. % No. % No. %  No. % 

1 Blue swimming crab** Portunus pelagicus 647* 42.0 688* 51.6 569* 41.1 319* 38.4 337* 21.2 

2 Square-shelled crab Galene bispinosa 500 32.4 58 4.3 38 2.7 419 50.5 124 7.8 

3 Crab (ปูแกละ) Grapsidae 27 1.8     1 0.1   

4 Crabs Leucosidae 13 0.8 2 0.1 1 0.1     

5 Smoothshelled crab Charybdis affinis 7 0.5 44 3.3 141 10.2 2 0.2 103 6.5 

6 Spider crab Majidae 6 0.4 9 0.7 7 0.5 3 0.4 4 0.3 

7 Crucifix crab** Charybdis feriatus 1 0.1   2 0.1 1 0.1   

8 Ridged swimming crab** Charybis natator   2 0.1 11 0.8   3 0.2 

9 Mud crab** Scylla serrata       1* 0.1 1* 0.1 

10 Mangrove stone crab** Myomenippe hardwickii     8 0.6     

11 Threadfin-bream** Nemipterus sp. 240* 15.6 85* 6.4 209* 15.1 25* 3.0 417* 26.3 

12 Threadtail tickletail** Pentapus setosus 47* 3.0         

13 Grunter** Terapon sp. 25* 1.6 66* 4.9 104* 7.5 7 0.8 19* 1.2 

14 Filefish** Monacanthus chinensis 9 0.6 23* 1.7 5 0.4 10* 1.2 252* 15.9 

15 Croaker** Johnius sp. 5 0.3 24* 1.8 15* 1.1 3 0.4 2 0.1 

16 Ponyfish** Leioganathus sp. 4 0.3         

17 Flathead** Platycephalus indicus 1 0.1         
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Table 2.3  (Cont.) 

No. Species Sci. Name 8-Jan-2006 29-Apr-2006 5-May-2006 21-Sep-2006 26-May-2007 

   

Catch 

No. %  

Catch 

No. % 

Catch 

No. % 

Catch 

No. %  

Catch 

No. % 

18 Goby Gobiidae 1 0.1 18 1.3 57 4.1 7 0.8 25 1.6 

19 Toad fish Batrachus grunniens 1 0.1         

20 Cardinalfish Apogon sp. 1 0.1     5 0.6 7 0.4 

21 Spinefoot** Siganus sp.   20* 1.5 8 0.6 10* 1.2 13 0.8 

22 Puffer** (ปลาปกเปา) (Lagocephalus sp.)   4 0.3 3 0.2     

23 Trevally** Selaroides leptolepis       1 0.1   

24 Sole** (Soleidae) Paraplagusia bilineata       2 0.2 1 0.1 

25 Flounder** Bothidae       1 0.1   

26 Striped catfish** Plotosus lineatus       1 0.1   

27 Seahorse Hippocampus hystrix         2 0.1 

28 Cuttlefish** Sepia sp.   8* 0.6 8* 0.6 9* 1.1 19* 1.2 

29 Octopus** Octopus sp. 4* 0.3 46* 3.4 38* 2.7 1 0.1 53* 3.3 

30 Mantis shrimp** Miyakea neap & Squilidae 2 0.1 206* 15.4 97* 7.0 1 0.1 191* 12.0 

31 Shrimp** Matapenaeus sp. 1 0.1 4 0.3 1 0.1   1 0.1 

32 Ark** Scapharca indica   20 1.5 45 3.3     

33 Asian Moon scallop** Amusium pleuronectes     5 0.4     

34 Murex Murex sp.   7 0.5 12 0.9 1 0.1 13 0.8 

  Total 1,542 100 1,334 100 1384 100 830 100 1587 100 

* Indicate the number retained of species from each operation,  ** Indicate those species that have marketable value.  
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 2.3.1 CPUE and discard analysis 

 Catch Per Unit Effort (CPUE) and discards from small scale pot were analyzed and 

shown in Table 2.4. Average CPUE of the blue swimming crab from 6 operations was 2.81 

crabs/pot. Fishermen retained only the blue swimming crab and discarded all the others.  

Average discard ratio and discard rate were 0.30 and 0.22 respectively. The average 

discard/pot was 0.76. 

 

Table 2.4  CPUE and discard from small scale (D = Discard No., R = Retention No.) 
 

Date 

No. of 

Pot 

No. of total 

catch 

No. 

Retained 

Crab 

CPUE 

 

Discard 

 

 

 

 

 

Ratio 

(=D/R) 

Rate 

(=D/((D+R)) Per pot 

17-May-06 255 1,243 1,135 3.8 0.10 0.09 0.37 

18-May-06 299 1,395 1,199 4.0 0.16 0.14 0.66 

08-Dec-06 366 1,531 1,109 3.0 0.38 0.28 1.15 

09-Dec-06 366 1,329 870 2.4 0.53 0.35 1.25 

18-May-07 367 964 734 2.0 0.31 0.24 0.63 

19-May-07 367 777 583 1.6 0.33 0.25 0.53 

   Mean 2.81 0.30 0.22 0.76 

 

 CPUE and discards from commercial scale pot were analyzed and shown in Table 

2.5. Average CPUE of the blue swimming crab from 5 operations was much smaller than 

small scale as 0.26 crabs/pot. The fishermen were not only retained blue swimming crab but 

also some economic value species such as threadfin bream, mantis shrimp, filefish, grunter 

and octopus. Average discard ratio and discard rate were 0.50 and 0.3 respectively slightly 

larger than small scale.  The discard/pot was smaller, average as 0.19 individual. 
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Table 2.5  CPUE and discard analysis from commercial scale operations 

Date 

No. of 

pot. 

No. of 

total catch 

Crab 

CPUE 

No. total 

retained 

CPUE (total 

retained)  

Discarded 

No. Discard by No. 

       Ratio Rate Per pot 

8-Jan-06 2,013 1,542 0.32 964 0.48 578 0.60 0.37 0.29 

29-Apr-06 2,117 1,334 0.32 1166 0.55 168 0.14 0.13 0.08 

5-May-06 2,120 1,384 0.27 1040 0.49 344 0.33 0.25 0.16 

21-Sep-06 1,687 830 0.19 374 0.22 456 1.22 0.55 0.27 

26-May-06 1,698 1,587 0.20 1289 0.76 298 0.23 0.19 0.18 

 Mean 1,335 0.26 967 0.50 369 0.50 0.30 0.19 

 

 The size of blue swimming crab from each fishing type is shown the comparison in 

Fig. 2.2. It shows clearly that small scale fishermen (inshore fishing ground) catch the big 

amount of the small size crab while commercial scale (offshore fishing ground) catch the 

larger size from their operations due to the different of fishing ground. 
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Fig. 2.2  Blue swimming crab size from the small and commercial scale crab pot   

   (n = 400 each). 

20 25 30 9535 40 45 50 55 60 65 70 75 80 85 90 
Carapace length (mm) 



 15

2.3.2 Soak time 

 The soak time of small scale is 13-15 hrs (over night). Small scale fishermen start 

their pot deployment in the evening (about 4 pm) and start retrieving in the next early 

morning (about 5 am). The soak time from commercial scales was much shorter than small 

scale, only 3-11 hrs (for the boat with 2000 pots) due to they have to share the fishing 

ground with the other fishing gears particularly the with the trawlers. Pattern of the soak 

time was different, depended on the pot retrieval method of the commercial boat. If the last 

deployed pot was the first hauled and continue hauling from this last deployed pot until 

finished, the pattern become as Fig. 2.3, but if the first deployed pot was the first hauled and 

continue hauling, the pattern would become as Fig. 2.4. Different retrieval operation method 

may effect to the catch. CPUE on 8 Jan 2006 (start hauling from the last deployed pot) was 

slightly higher than on 5 May 2006 (start hauling from the first deployed pot). 
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Fig. 2.3  Pattern of the crab CPUE (crab/pot) according to the soak time of commercial  

   scale pot on 8 Jan 2006 when the hauling started from the last deployed pot    

   (No. of pot = 2,013, CPUE = 0.32). 
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Fig. 2.4  Pattern of the crab CPUE (crab/pot) according to the soak time of commercial    

   scale pot on 5 May 2006 when the hauling started from the first deployed pot    

   (No. of pot = 2,120, CPUE = 0.27). 

 

2.4 Discussion 

 The use of observers aboard commercial vessels is a useful method of obtaining data 

on catch composition (Allen et al., 2001). In this study, fishing ground has much influence 

on the catch of collapsible pot targeting blue swimming crab in the upper Gulf of Thailand.  

Different fishing ground induces the different of fishing operation, catch composition, crab 

size catch, and discard species. Because of the many larger of pot numbers onboard in 

commercial scale, the discard problems were bigger than small scale both in quantity and 

quality (numbers and species). However the fishing ground of commercial scale showed 

positively for catching the larger crab size. Hence, select the fishing ground can induce the 

blue swimming crab size selectivity. These findings are similar with Walmsley et al. (2007) 

who reported that analysis of the community structure of trawl catches indicated that there 

are significant differences between fishing areas on both coasts (inshore and offshore). 

These differences mirror community areas suggested by survey data, using research survey 

data, can be loosely correlated with those identified in the current study based on 

commercial catches. 

Soak time (hrs) 
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 Variations in characteristics of the pot fishery affected the catches, and set durations 

of pots and traps vary widely. Soak times have been shown to have important consequences 

for fisheries (Briand et al., 2001). Fish traps in the Caribbean can be set for days (Munro, 

1974), spiny lobster Jasus spp. pots are typically set overnight (Frusher and Hoenig 2001), 

whereas durations of blue cod pot sets are in the order of 10–15 min to several hours (Cole 

at al., 2004). 

 The effect of soaking time on the retention characteristics of crab pots has been 

reported by Miller (1979a, b, 1990), and Zhou and Shirley (1997a). The crab catch usually 

increase rapidly during the first hours after setting a pot, but as time passes bait 

attractiveness will decrease and the growing number of crabs inside the pot may reach a 

level where they do not allow other crabs to enter, and the pot becomes saturated. Normally 

escape and entry rates of crabs will remain in balance for a while but later more crabs will 

leave the pots than go in. The retention characteristics of box and dome pots are completely 

different; box pot will keep the crab catch indefinitely and, though not baited, will allow the 

entry of fish and octopus, but dome pot will permit crabs and other organisms to escape and 

only crab conspecifics were attracted into the pots (Vazquez Archdale, et al., 2007). Using 

box or dome pots for population surveys will give completely different catch results; the 

effects of the different designs on the catches of crabs and other organisms are large over 1 

day soaking and will increase further with longer soaking time (Vazquez Archdale and 

Kuwahara, 2005; Vazquez Archdale et al., 2006b). 

 The soaking time of commercial scale crab pot operations was quite short (3-11 hrs) 

due to the fishermen had to share the fishing ground with the trawlers. The trends of CPUE 

increased since the pot was not reach the saturation yet (Miller, 1979b; Fogarty and Addison, 

1997). Retrieving operation method may effect the CPUE, by start retrieving from the last 

deployed pot showed the better CPUE than starting from the first deployed, possibly the 
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starting from the last pot can give longer soaking time particularly pots that were deployed 

from the beginning. For confirming the effect of escape soaking time on CPUE, extensive 

comparative with the longer soaking time experiment will be required.  

 This study reveals that the crab size selectivity for small scale pot should be 

concerned while species selectivity for commercial scale. Estimates of the catch 

composition of Gulf of Thailand collapsible crab pot have highlighted issues of concern 

within the fishery. The results showed that the by-catch for both types of operation has still been in 

the level that we should take some mitigation measures.  Although awareness of these issues can 

be used to advise in the formulation of a bycatch management plan, for several issues there 

is insufficient information on the scale of the problem. This highlights need for a programme 

specifically designed to answer the outstanding questions. A stratified approach is required 

to ensure that all fishing companies and fishing areas are adequately covered. Further, 

seasonal trends in catch composition or discarding pattern should be monitored, such that 

the efficiency of management strategies can be assessed.  
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Chapter 3 

Use of escape vents to improve size and species selectivity  

of collapsible pot for blue swimming crab, Portunus pelagicus in Thailand 

 

3.1 Introduction 

 Blue swimming crab Portunus pelagicus is an important coastal species in Thailand 

both for the domestic and export markets, with an annual production of around 40,000 tons 

(Fisheries Statistics of Thailand, 2007), worth about US $ 50 million value. Collapsible pot 

(Fig. 3.1) is a major fishing gear type together with the bottom gillnet for catching the crab.  

After introduction of the pot from Japan in 1981 (Okawara and Masthawee, 1981), intensive 

fishing activities by small scale operations using 200-300 pots per setting operation, and 

commercial longline type boats setting 2,000-5,000 or more pots, which has resulted in a 

decrease of catch per unit effort, and increased catch of smaller size blue swimming crab 

(Jindalikit, 2001). This trend requires urgent mitigation measures for resource conservation 

together with the renovation of the coastal environment, however, no practical success 

measures have so far been reported for resource management and stock enhancement.  

 

 

 

 

 

 

Fig. 3.1  Collapsible crab pot; box shaped with the size of 36×54×19 cm. 
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 In the crab pot fishery in Thailand, a large proportion of the catch consists of 

immature crabs and non-target species including other shellfish and finfish, which have to 

be discarded onboard after hauling if the species are of no or low economic importance.  

Boutson et al. (2005) reported that 32-42% of the blue swimming crab catch was immature 

based on onboard monitoring. The discard ratio (Matsuoka, 1997) by number for the crab 

was counted as 2.21 among all catch species, which means that 2.21 animals are discarded 

for every one commercially taken crab. In order to reduce the undersized of target species, 

bycatch and discards in pot fishing, escape windows or vents and other methods have been 

demonstrated and employed for the lobster traps (Stasko, 1975; Krouse, 1978; Nulk, 1978; 

Fogarty and Borden, 1980; Miller, 1990) and crab pots (Eldridge et al., 1979; Miller, 1990; 

Brown, 1982; Watanabe and Sasakawa, 1984; Guillory and Merrel, 1993; Nishiuchi, 2001). 

It is envisaged that the adoption of escape vents in pots for the crab can allow the escape of 

immature sized crabs, and furthermore reduce the proportion of other species and thus 

minimizing the discards.  

There are other approaches aimed to reduce the catch of undersized crabs from pots, 

such as installing the escape panels (Eldridge et al, 1979; Brown, 1982, Guillory and Merrel, 

1993; Guillory and Hein, 1998), increasing the mesh size (Watanabe and Sasakawa, 1984; 

Zhou, 1997; Guillory and Prejean, 1997; Vazquez Archdale et al., 2006), modifying the 

mesh shape (Guillory, 1998; Guillory and Hein, 1998), and comparing the pot shape or 

entrance design (Zhou, 1997; Vazquez Archdale and Kuwahara, 2005; Vazquez Archdale et 

al., 2006; Vazquez Archdale et al., 2007). The pot design should be decided according to the 

target species (Miller, 1990), while in Thailand, the box-shaped collapsible pot is the most 

popular type used in coastal areas, due to the good catch rate, low cost, and high portability 

which allow a large number to be loaded on a small deck space. The minor modification for 

use of escape vents to improve the selectivity of the conventional pot will require the 
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fishermen’s acceptance and cooperation. However as this also functions as a possible 

solution for the effects of ghost fishing if the pots are lost at sea (Arcement, 1993; Breen, 

1985), pots for P. pelagicus in Australia were estimated to ghost fish for more than 4 years 

(Sumpton et al., 2003), the reduction of undersized crabs and bycatch by use of the vents 

will potentially be an effective management tool for this fishery.  

 In this study, laboratory experiments were firstly conducted for determining the 

possibility of modifying the collapsible pot by designing escape vents to improve size 

selectivity, focused on reducing the catch of immature blue swimming crabs. Comparative 

fishing trials were also conducted between the conventional and modified pots with escape 

vents to assess the crab size selectivity and other non target species composition.  

 

3.2 Materials and Methods 

 The laboratory experiments were conducted at Sriracha Fisheries Research Station, 

Kasetsart University, Chonburi Province, Thailand, during February-May 2004. The shape, 

position and size of escape vents were examined to determine the most appropriate vent 

design and selectivity performance for reducing the catch of immature size crabs.  

Comparative fishing trials were conducted with two fishing operations in May 2005 in the 

coastal waters adjacent to the research station (Fig. 3.2) to compare the catch composition 

between conventional and vented pots to examine the crab size and species selectivity.  
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Fig. 3.2  Location map of study area ( ). 

 

 3.2.1  Experimental Pot:  Collapsible pots were obtained from the local fisherman. 

The pot is box-shaped, with the dimension of 36×54×19 cm having 2 slit entrances (Fig. 3.1), 

galvanized rod frame (4 mm diameter), and is covered with green polyethylene square-

shaped mesh net of 38 mm mesh size.  An iron hook is attached at the top panel for pot set-

up and collapsible function. 

 

 3.2.2  Laboratory experiments:  Outdoor experimental tanks measuring 1.7×1.7×1 

m3 with plastic shading cover were used. Filtered and aerated seawater of 28-30 °C was 

supplied into the tanks with 30 cm of sea water level, for covering the pot height of 19 cm.  

 Approximately 300 individuals in total of blue swimming crabs were collected by 

pot fishing in the coastal waters adjacent to the research station and kept in a stock tank for 

3-5 days before the experiments. The crabs were measured for carapace length (CL) as 

defined by distance length between frontal and intestinal margins of the carapace and a size 

range of 26-70 mm was obtained. The carapace height (CH) was also measured to obtain the 

relationship with CL. 

Sriracha 
Upper Gulf 
of Thailand 
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 The appropriate design of escape vents was examined by comparing the different 

vent shapes among square, rectangle, circle and ellipse. All vent shapes were the same 

length of 80 mm, with different height for the rectangular and ellipse vent as 40 mm (Fig. 

3.3(a)).  The vent frame was made from 2 mm diameter wire, and was located at bottom 

sides of lower slope panel in the same pot as shown in Fig. 3(b). All the shapes were 

sufficiently large enough to allow all of the crabs to escape through the vent openings. One 

to three crabs were placed inside the pot, and the time required prior to escape recorded in 

daytime for from each vent shape for up to 50 escapes in total. New individuals were 

introduced to the pots to maintain the number of crabs in the pot after escape of an 

individual. If a previously-escaped crab was used for a second time, in order to avoid any 

recognition and selection of the escape vent position, the direction of the pot was changed 

by turning the pot. The crabs which did not escape during a 24-hrs period were replaced 

with new ones.  

 
 

 

 

 

 

 

 

 

 
  (a)             (b) 

Fig. 3.3  Four different shapes of escape vent (a), located at bottom sides of the lower slope  

   panel (b), to observe the escape behavior of blue swimming crabs from the pot. 
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 After assessing the most appropriate vent shape, the vent positions were examined by 

comparing 5 different locations in the pot; as the corner and center parts of the lower slope 

panel, the upper and lower parts of the side panel, and corner of the top panel, as shown in Fig. 

3.4. The vents were located on both sides at the same position in the same pot, so as to 

monitor the escape behavior by the time recording for each escape from each vent position. 

Each individual crab was used only once in this experiment. The time recording was also done 

for every escape from each vent position for up to 50 escapes in total. 

 

 

 

 

 

 

Fig. 3.4  Square-shape escape vents were located at 5 pairs of different positions; lower 

   slope panel of corner (1) and center (2), of side panel upper (3) and bottom (4), and 

   of top panel corner (5) to observe the escape behavior of the crabs from the same 

   pot for the vent position experiment. 

 

 As the last phase of the laboratory experiment, the size selectivity performance of the 

escape vent was examined by placing crabs of known size groups in the pot in order to 

obtain precise size selection data (Miller, 1990), for vent sizes of 40, 45 and 50 mm in 

length and 35 mm fixed in height. Each size of vent was located at the bottom of the side 

panel according to the results of the vent position experiment. The crabs were grouped 

according to 5 mm CL classes in a range for 26-70 mm, by placing ten crabs of each size 

class range in the pot. Each vented pot was monitored in the experimental tank for 24 hours, 

for the number of crabs escaping and remaining inside. Here, the determination of the 
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appropriate vent size to allow the escape of immature female blue swimming crab (CL< 46 

mm) (Tuntikul, 1984) was the aim. The SELECT model (Tokai and Mitsuhashi, 1998; 

Millar and Fryer, 1999) was used to assess each escape vent selection by considering the 

selection range (L75%-L25%) and 50% selection length (L50%) (Jones, 1976; Sparre and 

Venema, 1998; Tokai and Mitsuhashi, 1998). The logistic selectivity curves were estimated 

using MS-Excel with solver, specified by two parameters, a and b, as the equation; 

 

S(l) = exp(a+bl)/[1+exp(a+bl)] 

The selectivity curves of the three vent sizes were estimated and the master curve (Tokai and 

Kitahara, 1989) according to the CL and vent length were determined. 

 

 3.2.3  Field experiments:  The appropriate vent design as shape, location and 

dimension from the laboratory experiments was tested in fishing trials on 4 and 5 May 2005, 

in the shallow waters adjacent to the Sriracha Research Station, Faculty of Fisheries, 

Kasetsart University, in the upper Gulf of Thailand (Fig. 3.2) as a fishing ground for small 

scale crab pot fishermen, about 1-1.5 km from shore with the depth of 4-6 m, and substratum 

composed of muddy sand. Two escape vents of 35×45 mm were located at opposite sides of 

the pot as shown in Fig. 3.5, to compare with the conventional type of pot. Fifty pots of each 

type were used and all pots were deployed individually, connected to a 10-12 m length of 

polypropylene rope and marked with a buoy (Fig. 3.6). They were baited with 

approximately the same sized fresh trevally Selaroides leptolepis pierced and bound by wire 

at the center bottom of the pots. Both types of pot were dropped together as a pair in each 

deployed-position with intervals of 20-25 mm, with 1-day soaking time following the 

normal operation procedure of small-scale crab pot fishermen. Pots were retrieved and the 

catch species and size of individuals from each pot recorded.  



 

 26

 

 

 

 

Fig. 3.5  Escape vents (35×45 mm) were located at both sides at the bottom of the side 

   panel for the field fishing trials. 

 

 

 

 

 

 

 

 

Fig. 3.6  The configuration of a deployed pot, individually set and connected with rope to 

   the buoy. 

 

 The selection curve of 35×45 mm vent in fishing trials was analyzed and compared 

with that of the laboratory experiment results, through the assumption for fishing trial data 

that the catch numbers in each length class (5 mm intervals, 20-70 mm CL) in conventional 

pot were the number of crabs that could escape from the vented pot, and all catch numbers 

of larger size (>50 mm CL) from both types of pot were retained for the comparison analysis. 
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3.3 Results 

 3.3.1 Laboratory experiments:  The escape vents allowed the smaller blue 

swimming crabs to escape with different performances among the shapes, positions and 

sizes. The escape frequency comparison among different shaped vents (Table 3.1) shows the 

highest rate of escape with the square shape vent as 70%, followed with circle shape as 18%, 

rectangular as 10%, and ellipse was the worst. The square shape vent was the most superior, 

even with the same vent length of 80 mm for all shapes which would allow all crab sizes to 

escape out freely. The vent opening area may be the decisive factor for enhancing the crab 

escape while the square was superior to the circle, and the rectangular superior to the eclipse, 

even with the almost similar opening area. Fig. 3.7(a) shows the escape frequency from the 

square shaped vent against the time elapsed, as 14 individuals escaping in the first 30 

minutes after starting the experiment.   

 
Table 3.1  Frequency comparison of the crabs that escaped through the different shapes of 

      escape vent  

 
Escape vent 

shape 

Dimension, 

height x length 

(cm) 

Vent 

opening 

area (cm)2 

Frequency of 

escape 

Percent 

escaping (%) 

Rectangular 4 × 8 32 5 10 

Square 8 × 8 64 35 70 

Circle 8 × 8 50.3 9 18 

Ellipse 4 × 8 25.1 1    2 

  Total 50 100 
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Table 3.2  Frequency comparison of the crabs that escaped through the different positions of 

      square vent 

 
No. Position of escape 

vent 

Frequency 

of escape 

Percent 

escaping (%) 

1 Corner slope panel 7 14 

2 Center slope panel 1 2 

3 Upper side panel 0 0 

4 Lower side panel 42 84 

5 Corner top panel 0 0 

 Total 50 100 

 

 

 

 

 

 

 

 

      (a)      (b) 

Fig. 3.7  Frequency of escape through the square vent (a) for shape experiment, and lower 

   side panel vent (b) for vent position experiment. 
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 Table 3.2 shows the escape frequency results for square vents among the different 

positions, which indicates that the best vent position was at the bottom of the side panel with 

the 84% of crabs escaped, followed by the corner position of the slope panel. Among the 

total number of escapes of 42 individuals from the lower side vent, 25 crabs escaped within 

the first 30 minutes as shown in Fig. 3.7(b). No individuals escaped from the top panel, and 

the upper part of side panel, for explaining the search behavior of crabs crawling on the 

bottom panel.  

 According to the observations of escape behavior, the CL is related to the vent length 

and CH related to the vent height, due to the ‘side crawling’ behavior of the crabs when 

escaping through the vents. The crab of just fitting size of CL and CH against the vent 

length showed the hard struggling for pushing its body through the vent, while the smaller 

crabs in most cases can escape smoothly through. Size selectivity according to the different 

escape vent lengths are shown as selectivity curves in Fig. 3.8(a), to give the probability of 

retained numbers among 10 individuals put in the pot for each CL class, which patterns are 

almost similar with shifting to the right when the vent length increases. Two further 

parameters are shown in Fig. 3.8; the selection range (SR) and 50% selection length (L50%) 

are used to compare the selection curves. The SR is determined by the slope of the curve and 

gives an indication of the size range selection that occurs, e.g. if all crabs below 30 mm CL 

escaped and all above 50 mm CL are retained, the SR will be 20 mm.  The L50% is indication 

at the CL class in which half of all crabs escape. The SR for vent lengths of 40, 45 and 50 

were estimated (L75% - L25%) to be 5.8, 4.0 and 4.9 mm, and the L50% for vent lengths of 40, 

45, and 50 mm were 39.1, 44.4, and 48.7 mm CL, respectively. The L50% of 50 mm vent 

length was closest to the size of first maturity crab size (>46 mm CL), while the SR of 

45mm vent was smaller than 50mm vent and rather smaller than of 40mm vent length (VL). 

According to similar pattern of selectivity curves in different vent length, the master curve 
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was calculated for the ratio of CL/VL and shown in Fig. 3.8(b), 50% retention probability 

was 0.98, close to 1.00 for the value CL divided by the vent length, which support the 

precise selective function of rigid frame of vent to the hard body structure of the blue 

swimming crab.  

 The CL of mature female crabs in relation to CH is larger than the male (Tuntikul, 

1984; Jindalikit, 2001). The size relation of female crab as CH = 0.46CL + 3.8 (R2 = 0.91, n 

= 100). Though the best positive result for the vent shape was square, after considering of 

the relationship of the crab size (CH and CL) to vent size, we decided to set the vent design 

with nearly-square shape of 35 mm height with 45 mm length as shown in Fig. 3.5, as this 

allows practical as well as functional usage of the pots. 
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 L50% = 39.1 mm 

 a = -14.7304, b = 0.3768 

 SR = 5.8 mm 

 

 L50% = 44.4 mm 

 a = -24.6702, b = 0.5560 

 SR = 4.0 mm 

 

 L50% = 48.7 mm 

 a = -21.8454, b = 0.4487 

 SR = 4.9 

 

 

 

 

   Carapace length (CL)      CL/VL 

    (a)        (b) 

Fig. 3.8  (a) Size selectivity for blue swimming crab according to escape vent length when 

   vent height was fixed at 35 mm, (b) master curve for crab size (CL) according to  

   vent length (VL). 
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 3.3.2  Field experiments  

 Regarding the comparative fishing trials, the catch comparison for blue swimming 

crab between conventional and vented pots is shown in Table 3.3. The vented pots could 

reduce the number of immature crabs caught from 61% to 14.3% on 4 May 2005 and from 

80% to 7.7% on 5 May 2005. From the 2-days pooled catch, conventional pots caught 45 

immature and 21 mature crabs, while vented pot caught 3 immature and 24 mature crabs. 

Those results show that the vented pot can reduce the number of immature size crabs caught 

while not reducing the catch efficiency for mature size crabs.   

 

Table 3.3  Size comparison of blue swimming crab catch between conventional and vented 

      pots on 4 and 5 May 2005 

 
 Conventional Pot Vented Pot Total 
 Mature Immature Mature Immature  

4 May 5 20 12 1 38 

5 May 16 25 12 2 55 

Total 21 45 24 3 93 

 

 

 

Fig. 3.9  Blue swimming crab size sampled with conventional pots (open columns) and 

   vented pots (shaded columns). 
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 The crab size (CL) from each pot type in comparative fishing is shown in Fig. 3.9.  

The vented pots showed a positive result clearly excluding the small size crabs while 

retaining the larger size when compared with the conventional pots. Crab size caught by 

vented pots was significantly larger than the size caught by conventional pots (Mann-

Whitney U-test; Z = 4.27, p< 0.01). Size selectivity of 35×45 mm vent for the crabs from 

fishing trails was analyzed and shown in Fig. 3.10 as a comparison with the laboratory 

results.  The selectivity curve from the trails shifts to the right as L50%  of 46.9 mm, with the 

SR of 4.0 mm same as in the laboratory. The two estimated selectivity curves are not the 

same with a lower probability of retention of larger CL for field trial selectivity, possibly 

due to the difference in number of crabs in each length class between laboratory and field 

conditions, particularly for the crabs at the length of 35-45 mm CL, which is the dominant 

size in the shallow fishing grounds used in the field trials.   

 The overall catch composition of crabs and other bycatch species for each pot type 

shows the differences in numbers, catch composition, their average size, range (Min-Max) 

and standard deviation (Table 3.4). Regarding the bycatch composition by number of 

individuals, Table 3.4 shows that the vented pots mainly caught fewer than conventional 

pots. This demonstrates the positive selective function of vents on the bycatch amount, while 

no significant differences on length size for each species that were caught in both types of 

pot (ANOVA, p = 0.05), except for the case of blue swimming crab. In the vented pot, none 

or less catch of some accidentally caught species were listed, such as smoothshelled crab, 

red crab, striped catfish, cardinal fish, gastropod and sea urchin.   
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Table 3.4  Catch composition between conventional and vented pots, from the 2 comparative 

      fishing trials 

 
Common name Scientific name Number of catch Length size (mm) 

  Convent-

ional 

Vented Conventional pots Vented pots 

    Mean Range 

(SD) 

Mean Range 

(SD) 

1.  Blue swimming crab* Portunus pelagicus 66 27 43.9 21-70 

(±10.5) 

53.1 39-63 

(±5.8) 

2.  Chinese filefish* Monacanthus chinensis 33 24 77.1 34-113 

(±18.5) 

78.5 48-135 

(±20.3) 

3.  Ridged swimming  

     crab* 

Charybdis natator 14 2 35.0 24-51 

(±7.0) 

39.5 33-46 

4.  Spiral melongena* Pugilina cochlidium 10 13 65.3 58-84 

(±7.2) 

56.9 40-79 

(±12.45) 

5.  Mangrove stone crab* Myomenippe hardwickii 6 2 47.3 37-63 49.0 48-50 

6.  Toad fish Batrachus grunniens 5 3 161.6 115-227 171.7 152-155 

7.  Sea urchin Diadema setosum 2 1 41.3  32.0 - 

8.  Striped catfish* Plotosus anguillaris 1 0 295.0 - - - 

9.  Cardinalfish Apogon sp. 2 0 76.5 67-86 - - 

10. Smoothshelled crab Charybdis affinis 1 0 29.0 - - - 

11. Red crab Charybdis sp. 1 0 49.0 - - - 

12. Gastropod Muricidae 1 0 35.0 - - - 

13. Trumpeter* Pelates 

quadrilineatus 

0 1 - - 120.0 - 

14. Cuttlefish* Sepia pharaonis  0 1 - - 58.0 - 

 Total 142 74 - - -  

 
* Indicate those species are of commercial value. 
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Fig. 3.10  Size selectivity of 35×45 mm escape vent for blue swimming crab from the field 

     trials with L50% = 46.9 mm, a = -25.9403, b = 0.5528, and SR = 4.0 mm, in 

     comparison with the result from the laboratory observation. 

 

3.4 Discussion 

 Pots are known to be highly selective for both species and sizes, due to their capture 

function as a passive gear using bait for attraction, as well as the entrance design with a non-

return device. Exclusion of small organisms can be controlled by adding an escape opening 

(Eldridge et al., 1979; Brown, 1982; Guillory and Merrel, 1993; Guillory and Hein 1998). 

The selection performance can be established according to the gear designing such as the 

size, shape, location and construction material of the escape vents, particularly for crabs and 

lobsters which have rigid shells. Size selectivity of an escape opening can be quite precisely 

assessed by selectivity experiments conducted by placing crabs of a known size in pots with 

escape openings (Miller, 1990). The rigid exoskeleton and dexterity of decapods to orient 

themselves to the most advantageous position for escape can account for this precision in 

selectivity. The escape vent, however, only works when the captured animal can find the 

opening; so that more than one vent is usually recommended (Eldridge et al., 1979; Brown, 

1982; 1993; Guillory and Hein 1998; Nishiuchi, 2001). Stasko (1975) suggested a general 

rule based on observations that Cancer irroratus and Homarus americanus oriented 
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themselves such that the smallest opening through which an animal could be pushed through 

by hand was also the smallest opening it would pass through unaided. 

 Laboratory experiments to determine suitable escape vent to facilitate immature blue 

swimming crabs to escape revealed that the shape, position and size of the vents affected the 

crab escape from pots, similar with the results of Nulk (1978), and Brown (1982). The 

square shaped vents located at the bottom of the side panel were superior. Since the water in 

the experimental tank was clear under the high ambient light levels in daytime, the crabs 

could preferably select the vent to escape with the largest opening area as the square shape, 

followed by the circle shape. Bottom side panel showed the best position for the crabs to 

escape, these results are strongly related to the behavioral characteristics of the crabs while 

being confined inside the narrow space of the pot. From direct observations in the tank, the 

crabs usually remain in the bottom corner of pots unless there is absolute necessity, for 

example; foraging, avoiding attacks by larger crabs, or trying to escape out. They mainly 

move by side crawling around the corner area of bottom pot panel. This behavior provides 

the crabs with frequent opportunities to find the vents that are located at the position in the 

bottom side panel. 

 Laboratory observations revealed that the crabs escaped from vents by ‘side 

crawling’ behavior, hence their carapace length (CL) is related to the vent length, and the 

carapace height (CH) to the vent height. Brown (1982) also reported that escape-gap 

selection depends upon body length and depth rather than carapace width. Though the best 

vent shape was the square type in the laboratory experiment, it was not proportional to the 

crab body shape. The vent height was fixed at 35mm which was large enough for all 

immature crabs to escape. The square shape vent provides unnecessary space that can affect 

the selectivity for crabs and other bycatch species, consequently a nearly-square shape of 
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35mm in height and 45 mm in length which is more appropriate with the crab shape, as 

being confirmed in size selectivity experiments, was used (Fig. 3.8). 

 Eldridge et al. (1979) reported a self-culling pot where 2.5-inch diameter escape 

ports of two in the top and one in the bottom gave the best results to reduce sub-legal sized 

of blue crabs Callinectes sapidus, according to laboratory observations and field trials. They 

did not compare the escape position between top and bottom, while our laboratory 

observations confirmed that P. pelagicus rarely crawls up to the top panel. They also 

reported that the circular shape was superior to the rectangular one, due to the larger opening 

area in a circular shape.  

 The appropriate escape vent size was determined by the CL instead of CW as a 

parameter for the selectivity curves due to the side crawling. Regarding the size selectivity 

in Fig. 3.8, based on the 3 different sizes of escape vents (40, 45 and 50 mm in length × 35 

mm in fixed height), a vent length of 50 mm can be the most suitable to release immature 

size crab because its L50% of 48.7 mm is close to the size of sexual maturity (>46 mm CL) 

for ensuring a chance to reproduce at least once before being captured. This vent size of 50 

mm length, however, can create the higher possibility of economic loss, particularly for 

small scale fishermen who operate in inshore areas and catch large amounts of small size 

crabs (Boutson et al, 2005), which all have a marketable value even though with a low unit 

price. Hence, vent size of 35×45 mm was employed in the field trials, with consideration on 

L50% value, the closest to mature crab size as 44.4 mm, and also the smallest SR as 4.0 mm.  

 Various parameters can affect the catch efficiency and selectivity in pot fishing that 

make it difficult to isolate them in comparative studies (Furevik and Løkkerborg, 1994). In 

the fishing trials at sea, we compared the catch composition for sizes of blue swimming crab 

and species with the same conditions of pot, bait, pot setting, fishing ground, operation date 

etc. between conventional and vented pots. The modified pot with vents resulted in a 
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decreased catch of immature sized of blue swimming crabs, while maintaining the catch of 

mature size crabs without any effect on the mature size catch efficiency. The same results 

were reported by Eldridge et al. (1979) for blue crab C. sapidus, Brown (1982) for crabs 

Cancer pagurus and lobster Homarus gammarus, and Nishiuchi (2001) for hair crab 

Erimacrus isenbeckii, by modifying the pot with escape openings. Furthermore, the catch 

reduction of small sized crabs can be related to increase the catch of large sized crabs 

through reduction of the effects of pot saturation or space competition effect (Fogarty and 

Borden, 1980; Brown, 1982; Guillory and Merrel, 1993). 

 There are other studies which concern the size selectivity and catch efficiency 

improvement in pot fisheries as Watanabe and Sasakawa (1984) by mesh size modification, 

Guillory and Hein (1998) by the hexagonal mesh, Kim and Ko (1990) by increased number 

of funnel entrances. Vazquez Archdale et al. (2006) demonstrated that bigger mesh dome-

shaped pot was more efficient for caching larger crabs of Charybdis japonica and P. 

pelagicus with less amount of bycatch. These ideas can be also applied to the collapsible pot 

improvement in Thailand in the future. 

 The reduction of immature crab catch while maintaining mature size catch, by 

modifying the pot with escape vents can be one of the options for establishing a more 

sustainable crab pot fishery in Thailand. The optimum vent design can also be an effective 

management tool for bycatch/discards and ghost fishing problems, through minimizing the 

mortality rate of bycatch species and targeted smaller individuals as reported for the blue 

crab pot fishery (Eldridge, 1979; Arcement, 1993). For confirming the effect of escape vents, 

extensive comparative fishing trials will be required, for the purpose of fishermen’s 

acceptance both in the small scale for shallower waters and the commercial scale for deeper 

waters, together with the impact analysis for the reduction of mortality due to ghost fishing 

in the fishing ground. 
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Chapter 4 

Study on blue swimming crab behavior for understanding  

the capture process, and comparison of slope net mesh size 

for improving the pot catching efficiency 

 

4.1 Introduction 

 Pot and trap are simple, passive fishing gears that allow animals to enter and then 

make it hard for them to escape. This is often achieve by; 1) putting chamber in the pot or 

trap that can be closed once the animal enters and, 2) having a funnel that makes it difficult 

for the animals to escape. 

 Pots and traps are widely used to capture crustaceans and fishes (Miller, 1990; 

Cappo and Brown, 1996). Pots and traps may be baited or unbaited, depending on the target 

species.  The capture process comprises attraction (unbaited traps presumably attract via 

their structure), approaches, entries, and exits (Fogarty and Addison, 1997). For several pot 

types, continuous data show that target species often may enter and depart from pots 

apparently at will (e.g. Jury et al., 2001). The catch rate of pots thus reflects the rate at which 

the target species enters and exits the pot, in relation to the timing of hauling.  The capture 

process is complicated by the fact that entry and egress may be altered by presence or 

absence of prior entrants (Frusher and Hoenig, 2001). Frusher and Hoenig (2001) described 

seasonal changes in pot selectivity for spiny lobsters in Tasmania. Those changes reflect 

alterations of stock size composition during the fishing season, as large lobsters exclude 

small lobsters from pots, and larger lobsters are progressively removed from the population 

by the fishery over the season. The appropriate strategy for fishing therefore depends on the 

costs and benefits of setting and hauling, in relation to stock composition. 
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 The historical development of fish-capture technology have been strongly related to 

the level of fish behavior knowledge (Arimoto, 2001). From this view point, it can be 

emphasized that the success of fishing technology largely depends on how much fish 

behavior knowledge has been utilized for fishing gear design and operation. The availability 

of relatively cheap video technology has improved understanding of fisheries and fishes. He 

(1993) observed behavior of cod around traps. Improved information regarding sizes of fish 

(e.g. Harvey et al., 2001), the relative abundances of fishes (e.g. Willis and Babcock, 2000), 

the behavior of fish entering and leaving traps, and as the pot is hauled (e.g. Cole et al., 

2003), and the behavior of fish in areas that are relatively inaccessible to observers (e.g. He 

2003) have all been enhanced by video observations. However, there remains considerable 

scope for technology to improve fisheries, and the behavior of fish toward fishing gear is 

ideal for such investigations. 

 In Korea, Japanese shore swimming crab Charybdis. japonica's growth and 

reproduction (Kim, 2001), and behavior towards various pot shapes and types of entrance 

(Kim and Ko, 1987 and Kim and Ko, 1990) have been studied; but little is known of this 

crab's behavior, capture process. Research on different types of pot for other crab species 

have examined the effect of shape (Miller, 1979), mesh size (Sinoda and Kobayashi, 1969,  

Guillory and Prejean, 1997, and Jeong et al., 2000), and entrance type (Salthaug, 2002), 

number (Miller, 1990) and location (Smith and Sumpton, 1989) on capture efficiency.  

Nevertheless, there are few studies comparing the efficiency of different mesh size of 

collapsible pots targeting blue swimming crab 

 The aim of this study was to clarify the blue swimming crab behavior during capture 

process of the collapsible pot and compared of slop net (entrance net) mesh sizes implied to 

the catch efficiency of the crab pot. 
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4.2 Materials and Methods 

 Regarding the slope net mesh size comparison, two smaller mesh sizes of 25 and 18 

mm were compared with the conventional one of 38 mm. The square shape net for attaching 

at slope net was modified by turning 90° from diamond mesh. The angle of slope net was 

17°, the length was 19.8-20.9 cm up to the mesh size (Fig. 4.2(a)). The upper net panel was 

removed (Fig. 4.2(b)) for easier and clearer to observe and record the crab behavior by video 

camera. 

 The crab behavior observations and slope net mesh size experiments were conducted 

in the outdoor experimental tank measured the size of 1.7×1.7×1.0 m3 with shield roofs and 

the 25 cm sea water level, for covering the pot height of 19 cm. Filtered and aerated 

seawater of 28-30 °C was supplied into the tanks, released the active crabs with the size of 

35-45 mm carapace length (medium size), 10-12 individuals into the tank. The crabs were 

collected by pot fishing in the coastal waters adjacent to the research station and kept in a 

stock tank for 2-3 days before the experiments. Travelly Selaroides leptolepis was used as 

the bait and attached by the wire, located at the center of bottom pot panel. Drop the pots 

that had different slope net mesh size in the tank, record the crab behavior and approaching 

to entrap the pot by a video camera (Panasonic, Model GS 300).   

 Cathing efficiency was examined by comparing the different mesh sizes at the slope 

net. The time spent duration of the crabs on each slope net mesh size after as the first touch 

until being entrapped was evaluated. The un-entrapped crab (gave up) was recorded and 

analyzed. The crawling speed on the slope net was also measured and estimated the data 

from the video recording. 
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Fig. 4.1 The shape and bar of diamond mesh (38, 25 and 18 mm) after modified to be 

 square (bar length is a half of mesh size). 

 

 

 

   

   (a)         (b) 

Fig. 4.2 Slope net length and angle of the pot (a), the pot after was removed the upper 

 net panel (b). 

19 mm 12.5 mm 9 mm 

19.8-20.9 cm 

17°

Slope net 
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4.3 Results 

 The crawling patterns during the crabs crawled on the slope net since the first touch 

until being entrapped on 38 (conventional), 25, and 19 mm mesh size are shown in the Fig. 

4.3-4.5 respectively. The crabs usually attempted to move forward trough the slope net by 

side crawling. However, if it was difficult to crawl up the net they moved downward and 

attempted to move up forward again. Crawling patterns on the slope net with smaller mesh 

size were more likely to be move straight forward than the conventional one (Fig. 4.3-4.5). 

 Time spent on the slope net until trapped for the mesh size of 18 and 25 mm tended 

to be shorter than that for 38 mm mesh net (Fig. 4.3-4.6). Three crabs gave up their attempts 

to enter the pots during crawling on 38 mm slope net, while no any gave up on 25 mm, and 

one individual gave up on 18 mm mesh size (Fig. 4.7). Average crawling speed on the tank 

floor was estimated as 10.3 cm/s, and the average maximum crawling speed on slope net 

mesh size of 38, 25 and 18 mm were 5.1, 5.9 and 4.7 cm/s respectively (Fig. 4.8).   

 The capture process comprised of attraction (with the bait), approached, and entered. 

The crabs attempted to escape after that. Key behavior patterns from the observations were; 

the crabs passed through the slope net by crawling (not swimming) to enter the pot. They 

never returned back if their claws can reach the ending edge of the net, but if not reached 

they moved backward or forward as the patterns in Fig. 4.3-4.5. After entered the pot, 

usually they directly approached to the bait and preferred start feeding at the belly part of the 

fish bait.  After feeding they might take a rest first, then searched the way to escape out by 

crawling around the bottom pot panel and used a side of their claws push the side net panel 

to find the way to escape out. It was hard for them to escape out even the experimental pot 

without upper net panel (Fig. 4.2). From the observations in the experimental tank they 

usually remain at the bottom corner of the pots unless there is absolute necessity, for 

example; foraging behavior, avoiding other larger crabs, search the way to escape etc., 
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during which they generally move by side walking around the corner of bottom side panel of 

the pot. The crabs sometimes showed territorial behavior to keep their own space while 

caging in the pot, fighting could happen if other crabs come closer. 

Fig. 4.3  Crawling patterns of the crabs on slope net mesh size of 38 mm (n = 8). 
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Fig. 4.4  Crawling patterns of the crabs on slope net mesh size of 25 mm (n = 8). 

 

Fig. 4.5  Crawling patterns of the crabs on slope net mesh size of 18 mm (n = 6). 
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Fig. 4.6  Time spent on the slope net until trapped according to the different mesh sizes. 
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Fig. 4.7  Crawling pattern of the crabs in case of returning back (un-trapped)    

   (3 crabs returned back on 38 mm, and 1 crab on 18 mm mesh size). 
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Fig. 4.8  Average crawling speed on the tank floor (n = 10) and average maximum  

   crawling speed on slope net mesh size of 38 (n = 8), 25 (n = 8), and 18 (n = 6) mm. 

 

4.4 Discussion 

 Smaller mesh size on the slope net tended to show the positive result to reduce the 

time spent and crawling struggling of the crabs from the first touch until entrapped. This 

result since they crawl on the small mesh easier than the conventional one. Though the 

average maximum speed among 3 mesh sizes had not much difference but the crawling 

patterns were different, by smaller mesh size showed that crab crawled backward less than 

the conventional and reduced possibility of the crab to give up (un-trapped). However, 

frequency of the data still is poor, the repetition of the experiment is recommended.  

 The crabs usually remain at the bottom corner of the pots unless there is absolute 

necessity and they generally move by side crawling around the corner of bottom side panel 

of the pot. This behavior attributes the difficulty for the crabs to escape out even though the 

upper net panel of the experiment pot was removed. 

 Though the repetition of data among the three mesh sizes used during the experiment 

was poor, author suspect that the smaller mesh size was the main affecting crawling 

efficiency and related to capture efficiency, particularly reducing the un-trapping of the 

crabs that touched, crawled, and entrapped in the pot. On larger mesh, the spines of the 
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crab's carapace and claws were fell down the slope net panel easily, and uncomfortable to 

move forward up, hence the crabs had to try to enter many times and spend the longer time 

on it, that increase the possibility to give up entering to the pot.   

 Crab behavior towards the netting of pots showed that reducing the mesh size of the 

bottom half of the entrance funnel in Scottish creels increased the catches of crabs and 

lobsters (Thomas, 1953). The effect of mesh size in pots has been reported to effect catching 

efficiency and size composition in the fishery of the crab Chionoecetes japonicus (Watanabe 

and Yamasaki, 1999). Mesh size differences affected the catching efficiency of pots and the 

size composition of the crab C. japonicus, where smaller meshes caught 1.2–2.9 times as 

many crabs as did the larger meshes, but mainly small ones (Sinoda and Kobayashi, 1969). 

Smaller mesh size of the pots retained more small crabs (Vazquez Archdale et al., 2006).  

Watanabe and Sasakawa (1984) found that the ability of the crab Eromacrus isenbeckii to 

climb a net was also affected by the mesh size. They reported that crab juveniles could climb 

40° mm mesh netting; but not 90° mm because of their shorter legs. Fishing trials with the 

crab E. isenbeckii showed also that larger meshes resulted in lower total crab catches per pot; 

but with a notable decrease in the quantity of undersized crabs. Since the pots employed in 

this study had entrances with different mesh sizes this may have affected the efficiency of 

the crawling and the catch. 

 In the blue crab Callinectes sapidus pot fishery, Guillory and Hein, (1998) found that 

the shape of the meshes affected the catch and that hexagonal meshes caught a larger 

number of legal sized crabs, while smaller square and rectangular mesh sizes caught more 

undersized crabs than larger ones. Nishiuchi (2001) report that the legal size of hair crab E. 

isenbeckii can be selective and efficient when appropriate combination of mesh size, escape 

vents and entrances are used. 
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 The crabs passed through the slope net by crawling to enter the pot and never 

returned back if their claws can reach the ending edge of slope net. During being entrapped 

inside the pot, usually the crabs remain but if they move they crawl mainly around the 

bottom panel. These behavior patterns can give the idea for shortening the slope net distance 

and reducing the pot height of the conventional pot design which should be proved in the 

future study. Through the behavior observations and slope net mesh size comparison; 

smaller mesh size, shorten the net panel at the slope net, and reducing the pot height are 

recommended points to consider for improving the catch efficiency. 
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Chapter 5 

Comparative fishing trials between conventional and modified pots 

 

5.1 Introduction 

 The blue swimming crab Portunus pelagicus is an important coastal species in 

Thailand both for the domestic and export markets, with an annual production of around 

40,000 tons (Fisheries Statistics of Thailand, 2007), worth about US $ 50 million value. It is 

well known for the good taste. Collapsible pot is a major fishing gear type for catching the 

crab in the gulf of Thailand, where it is commercially exploited using bottom gill nets and 

pots, which has resulted in a decrease of catch per unit effort, and increased catch of smaller 

size blue swimming crab (Jindalikit, 2001). 

 Research on different types of pot for other crab species has examined the effect of 

shape (Miller, 1979), entrance type (Salthaug, 2002), number (Miller, 1990) and location 

(Smith and Sumpton, 1989) on capture efficiency. Nevertheless, there are few studies 

comparing the efficiency of different pots (Furevik and Løkkeborg, 1994, Vazquez Archdale 

et al., 2003, Vazquez Archdale et al., 2006 and Vazques Archdale and Kuwahara, 2005) 

particularly focusing on effect of mesh size  and escape vent for collapsible box-shaped pot 

(Sinoda and Kobayashi, 1969, Guillory and Prejean, 1997, Guillory, 1998; Jeong et al., 

2000). 

 Author has previously examined the appropriate vents to exclude the small size crab 

(Chapter 3), and compared mesh sizes at slope net to evaluate the catch efficiency (Chapter 

4) including laboratory behavior observations towards the pot. In this chapter, fishing trials 

to compare the performance of conventional pot and modified pot (with vents and smaller 

mesh size at lower slope net) was investigated both in small scale and commercial scale crab 

pot. The aim of this study was to clarify the effect of escape vents and smaller mesh size of 
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slope net on the catch of blue swimming crab and other bycath of the collapsible box-shaped 

pot. This study also attempted to improve the material of the vents by changing the material 

from the wire to twine of polyethylene to solve the problem of loosing the wire vent shape 

after the operation. 

 

5.2 Materials and methods 

 5.2.1 Small scale crab pot 

 The comparative fishing among 4 different types of pot such as; conventional 

(control), smaller mesh size (25 mm) at slope net, smaller mesh size at slope net with 1×2 

mesh vent (19×38 mm), and smaller mesh size at slope net with 1×3 mesh vent (19×57 mm) 

was tested in fishing trials on 19 and 20 Jan 2008, in the shallow waters adjacent to the 

Bang-Pra Beach, Chonburi Province, in the upper Gulf of Thailand (Fig. 5.1(a)) as a fishing 

ground for small scale crab pot fishermen, about 0.5-1.0 km from shore with the depth of 4-

6 m, and substratum composed of muddy sand.  Smaller mesh size was replaced at the lower 

slope panel and extended to the bottom panel of the pots. The escape vents were cut from 

mesh size at bottom side panel, strengthen the vent edge by binding with polyethylene twine 

diameter of 1 mm (Fig. 5.2). This method was made in order to solve the problem of 

loosing/changing the shape of wire vents after the operation. The vented pots for 

comparative trials became as shown in Fig. 5.3. Thirty pots of each type were used and all 

pots were deployed individually by employing a fisherman. Each pot connected to a 10-12 

m length of polypropylene rope and marked with a buoy (Fig. 5.4). They were baited with 

approximately the same sized fresh trevally Selaroides leptolepis pierced and bound by wire 

at the center bottom of the pots. Four types of pot were dropped one by one with intervals of 

20-30 m, with 13-15 hrs soaking time following the normal operation procedure of small-
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scale crab pot fishermen. Pots were retrieved and the catch species and size of individuals 

from each pot recorded.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1  Location map of study area (Bang-pra Beach, Chonburi Province). 

 

 

      

   (a)         (b) 

Fig. 5.2  The vents were cut the mesh size and bound with polyethylene twine at the both 

   both side of bottom side panel of the pot for comparative fishing trials [a = vent  

   of 1×2 mesh (19×38 mm), b = vent of 1×3 mesh (19×56 mm)]. 

Bang-pra 
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Fig. 5.3  Escape vents were located at both sides of the bottom of the side panel for 

 the comparative fishing trials  

 

 

 

 

 

 

 

 

Fig. 5.4  The configuration of a deployed pot, individually set and connected with       

rope to the buoy. 

 

 5.2.2 Commercial scale crab pot  

 Three types of pot; conventional (control), smaller mesh size (25 mm) at slope net, 

and conventional pot with 1×3 mesh vented pot, were tested in the fishing trials at sea 

known as a fishing ground for commercial scale crab pot, northwest of Si-Chang Island, 

Chonburi Province, in the upper Gulf of Thailand (Fig. 5.5), 15-20 m depth, on 6 and 8 May 

2008 by employing a commercial boat. The conventional pots were obtained from the crab 

boat. The smaller mesh size at slope net, and vented pots were prepared by cutting of 1×3 

mesh and prepared the vents with the same method as in small scale comparison. Ninety 

pots of each type were used and all pots were deployed with long-line setting by the 
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fishermen onboard. Each pot connected to a 2.5 m length of polypropylene branch line rope 

and connected to the main line. All pots were baited with approximately the same sized 

fresh tilapia Oreochromis niloticus pierced by a wire rod at the center bottom of the pots. 

Three types of pot were dropped type by type continuously in the early morning with 

intervals of 12 m, about 6 hrs soaking time following the normal operation procedure of 

commercial-scale crab pot fishermen. Pots were retrieved by hauler machine, and the catch 

species and size of individuals from each pot type were recorded and compared. 

 

 

 

 

 

 

 

 

Fig. 5.5  Location map of study area (northwest of Si-Chang Island, Chonburi Province) 

 

5.3 Result 

 5.3.1 Result from small scale 

 The overall catch (catch pooled on 19-20 Jan 2008) composition by number of blue 

swimming crabs and other bycatch species for 4 types of pot shows the differences in 

numbers, catch composition, their average length size, and size range (Min-Max) as in Table 
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5.1. Regarding the comparative for blue swimming crab, conventional pots were assumed as 

control pot, the smaller mesh size at slope net pots could increase the number of the crabs 

caught from 24 to 35 crabs, while the both types of vented pot (1×2 and 1×3 mesh) pots 

caught similar number with the control as 23 and 25 crabs respectively. 

 According to the bycatch composition by number of individuals, Table 3.5 showed 

that the main bycatch were ridged swimming crab, smoothshelled swimming crab and 

filefish. The others caught species were small number as incidentally catch. The smaller 

mesh size at slope net pots caught larger number of the main catch species than control, 

except for the case of ridged swimming crab. The smaller mesh size pot also caught species 

with larger than the both types of vented pot. These demonstrate the positive efficiency 

function of smaller mesh size at slope net on the catch amount. 

 The smaller mesh size at slope net with the vents of 1×2 and 1×3 mesh pots could 

reduce the number of all bycatch species while maintain the similar catch number of blue 

swimming crabs when compared with control pots (Table 3.5). Those results show that the 

vented pots can reduce the number of bycatch caught while not reducing the catch efficiency 

for the blue swimming crabs. And 1×3 mesh vented pots show the better positive results to 

reduce the bycatch compared with 1×2 mesh vented. 

 The blue swimming crab size from 4 different pots comparative fishing trials is 

shown in Fig. 5.6. Compared with the control pots, the smaller mesh size at slope net pots 

show the positive result to catch the small size crab (26-45 mm CL), the both of vented pots 

shows the positive result to reducing the small size of the crab catch while maintain the 

catch number of the larger size, particularly in 1×3 mesh vented pots (Fig. 5.6). 
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Table 5.1  The catch according to 4 different types of pot from 2 comparative fishing trials (pooled catch on 19, 20 Jan 2008, n = 30 pots/each) 

Species Conventional pot (Control) Smaller ms at slope net Smaller ms at slope net + (1x2  vent) Smaller ms at slope net + (1x3 vent) 

 

No. of 

catch 

% by 

No. 

Mean 

length 

Size 

range 

No. of 

catch 

% by 

No. 

Mean 

length 

Size 

range 

No. of 

catch 

% by 

No. 

Mean 

length 

Size 

range 

No. of 

catch 

% by 

No. 

Mean 

length 

Size 

range 

1. Blue swimming crab, 

    Portunus pelagicus 24 25.8 39.9 31-52 35 36.8 40.7 29-51 23 31.9 41.2 32-50 25 41.7 45.24 27-60 

2. Ridged swimming crab, 

    Charybdis natator 58 62.4 32.8 21-49 48 50.5 32.0 14-50 35 48.6 30.5 16-44 24 40.0 28.13 18-36 

3. Smootshelled swimming,  

    crab Charybdis affinis 4 4.3 31.0 28-35 8 8.4 30.9 26-34 3 4.2 25.3 22-31 0 0  -  - 

4. Filefish, 

   Monacanthus chinensis 4 4.3 81.0 69-107 3 3.2 91 62-130 4 5.6 81.0 55-123 4 6.7 106.75 53-179 

5. Flower moon crab,  

   Matuta planipes 1 1.1  - 34 0  -  -  - 0  -  -  - 0 0  -  - 

6. Mangrove stone crab,  

   Myomenippe hardwickii 1 1.1  - 52 0 0  -  - 2 2.8 56.5 53-60 1 1.7  - 50 

7. Hermit crab,  

    Clibanarius longitarsus 1 1.1  - 78 0 0  -  - 1 1.4  - 67 0 0  -  - 

8. Grunter,  

    Pelates quadrilineatus 0 0  -  - 1 1.1  - 19 0 0  -  - 3 5.0 75.33 72-79 

9. Spinefoot, Siganus oramin  0 0  -  - 0 0  -  - 2 2.8 138.0 131-145 0 0  -  - 

10. Wrasse, Halichoeres sp. 0 0  -  - 0 0  -  - 2 2.8 133.5 132-135 0 0  -  - 

11. Toad fish, 

      Batrachus grunniens 0 0  -  - 0 0  -  - 0 0  -  - 2 3.3 163 156-170 

12. Spiral melongena,  

     Pugilina cochlidium 0 0  -  - 0 0  -  - 0 0  -  - 1 1.7  - 53 

Total 93 100   95 100   72 100   60 100   
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Fig. 5.6  Blue swimming crab size from different pots comparative fishing trials      

   (catch pooled on 19-20 Jan 2008). 
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5.3.2 Result from the commercial scale 

 Based on the comparative fishing trials on 6 and 8 May 2008 (catch pooled), the 

overall catch comparison among 3 different types of pot; conventional, smaller mesh size at 

slope net, and conventional with vents (1×3 mesh) is shown in Table. 5.2.   

 

Table 5.2  The catch number from comparative fishing trials (pooled catch on 6 and         

      8 May 2008, n = 90 pots/day/each type) 

 
Common name Scientific name Number of catch 

  Convent-

ional pots 

Smaller 

ms pots 

Conventional 

with vents pots 

1.  Blue swimming crab* Portunus pelagicus 17 15 14 

2.  Filefish* Monacanthus chinensis 10 12 14 

3.  Grunter* Therapon jarbua  0 2 12 

4.  Smoothshelled   

     swimming crab 

Charybdis affinis 6 10 7 

5.  Square-shelled crab Galene bispinosa 13 24 8 

6.  Octopus* Octopus sp. 5 1 2 

7.  Murex shell Murex sp. 3 0 3 

8.  Silver biddy* Gerres sp. 0 0 1 

9.  Mantis shrimp* Miyakea nepa 6 13 3 

10. Shrimp* Penaeus sp. 0 0 1 

11. Cuttlefish*  Sepia pharaonis  1 3 0 

12. Threadfin bream* Nemipterus sp. 1 1 0 

13. Butterfly fish Chaetodontoplus 

mesoleucus 

4 0 0 

14.  Goby Yongeichthys nebulosus 4 2 0 

15.  Ponyfish Leiognathus sp. 0 1 0 

16.  Toad fish Batrachus grunniens 0 1 0 

Total  53 70 51 

 

* Indicate those species are of commercial value. 
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 Since the catch from the 2 trials were very poor, hence the results might not clear and 

difficult to discuss. However, from the Table 5.2, the catch number of blue swimming crabs 

among 3 different pots were similar, it showed the largest catch in conventional pots as 17 

crabs, followed with the smaller mesh size at slope net pots as 15 crabs, and conventional 

pot with vents was the least as 14 crabs.   

 The size of blue swimming crab from the comparative fishing is shown in Fig. 5.7.  

Compared with control pot, smaller mesh size at slope net pots showed the positive results 

to catch the small size crabs (31-45 mm CL) but slightly reduced the catch number of the 

larger (>45 mm) size crab, conventional pots with vents tended to reduce the small size crab 

while maintained the large crabs.  

 

 

 

 

 

 

 

 

Fig. 5.7  Blue swimming crab size from the comparative fishing trials (catch pooled     

   on 6, 8 May 2008). 
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 The catch number comparison of some bycatch species between conventional pots 

VS convention pots with vents, and conventional pot VS smaller mesh size at slope net pots 

is shown in Fig. 5.8-5.9 respectively. Fig. 5.8, the vented pot showed the positive results to 

reduce the low/non commercial values such as square-shelled crab, butterfly fish and goby 

while showed the better catch on commercial value such as filefish and grunter, except for 

mantis shrimp. Fig. 5.9 showed that the smaller mesh size at slope net pots caught larger 

number of the main bycatch species than conventional. This demonstrates the positive 

efficiency function of smaller mesh size at slope net on the catch amount of bycatch species. 
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Fig. 5.8  Number of some catch species from conventional and vented pots. 
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Fig. 5.9  Number of some catch species from conventional and smaller mesh size at     

   slope net pots. 
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5.4 Discussion 

 Improving the escape vents by changing the material from wire to polyethylene 

twine showed the positive results to maintain the vent shape. The shape of vents is folded 

when the pots are collapsed, and can reform the shape again when the pots are set up 

(boxing) due to the specification of the shape material (polyethylene). 

 Though the poor catch through the fishing trials particularly on commercial scale, the 

smaller mesh size at slope net and escape vents were the main affecting blue swimming crab 

size and other species selection. Regarding behavioral observations in the laboratory 

(Chapter 3-4) determined that the small size can escape from the vent but they can not 

escape from the conventional pot because the tight slit entrances prevented the crabs from 

getting out (Vazquez Archdale et al., 2007). 

 Smaller mesh size at slope net could increase the crab catch species particularly the 

small size crabs, since it is easier for them to crawl through, and spines on the crab's 

carapace and claws would tangle with the netting material lesser. The effect of mesh size in 

pots has been reported to effect catching efficiency and size composition in the fishery of the 

crab Chionoecetes japonicus (Watanabe and Yamasaki, 1999). Thomas (1953) showed that 

reducing the mesh size of the bottom half of the entrance funnel in Scottish creels increased 

the catches of crabs and lobsters. Watanabe and Sasakawa (1984) reported mesh size could 

effect on climbing of Hair crab Erimacrus isenbeckii, juvenile crabs could climb on 40 mm 

mesh size but could not on 90 mm due to their shorter legs. Fishing trials with the crab E. 

isenbeckii (Watanabe and Sasakawa, 1984) showed also that larger meshes resulted in lower 

total crab catches per pot; but with a notable decrease in the quantity of undersized crabs. In 

the commercial scale trials, larger size of blue swimming crabs (>45 mm) were caught in 

small numbers the smaller mesh size pot, possibly due to the effect of other species in the 
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pot which this type of pot catch the biggest number. Some species may be aggressive and 

preventing the crabs from entering the pot (Williams and Hill, 1982). 

 In the blue crab Callinectes sapidus pot fishery (Guillory and Hein, 1998), it was 

found that the shape of the meshes affected the catch and that hexagonal meshes caught a 

larger number of legal sized crabs, while smaller square and rectangular mesh sizes caught 

more undersized crabs than larger ones. Mesh size differences affected the catching 

efficiency of pots and the size composition of the crab C. japonicus, where smaller meshes 

caught 1.2–2.9 times as many crabs as did the larger meshes, but mainly small ones (Sinoda 

and Kobayashi, 1969). Vazquez Archdale et al. (2006) demonstrated that bigger mesh dome-

shaped pot was more efficient for caching the larger crabs of Charybdis japonica and 

Portunus Pelagicus with less amount of bycatch. They suspect that entrance type and mesh 

size were the main effecting capture efficiency. 

 Differences in the catch amount of non-target species were found among all pot 

types. The smaller mesh size at slope net pot caught most, followed with the conventional, 

and the vented pot the least. The smaller meshes contributed to the catch and higher 

retention of the first. The vented pot retained less because its allowed for some of the catch 

to escape after the bait was consumed. However it may effect to some economic bycatch 

species for commercial scale crab pot, such as the mantis shrimp. 

 The vents contribute small size of blue swimming crabs to escape without any effect 

on larger size catch efficiency. They also allow some bycatch species that mostly be 

discarded from small scale pot fishery.  Eldridge et al. (1979) demonstrated that escape ports 

could reduce in catch of sublegal crab C. sapidus 82%.  Brown (1982) reported that, in the 

field trials the use of all escape gaps tested resulted in significant decreases in the number of 

undersized crabs and lobster retained. Nishiuchi (2001) found the legal size of hair crab E. 



 62

isenbeckii can be selective and efficient when appropriate combination of mesh size, escape 

vents and entrances is used. 

 The reduction small size crabs catch while maintaining larger size, through optimum 

escape vents selection would increase many benefits to pot fishery. The catch rate of small 

size crab will be decreased and may increase big size crab because of pot saturation effects 

that occur due to excessive retention of smaller crabs (Guillory and Merrell, 1993). 

Increased catches of legal-size crabs (probably the result of decreased competition for space 

within) have been reported in traps where escape vents were used to reduce sublegal catch 

(Fogarty and Borden, 1980; Brown, 1982; Guillory and Merrell, 1993). Bycatch species that 

associate to discard problems also will be decreased.  And if the pot lost at sea, ghost fishing 

mortality would be reduced since the escape vents allow some captured animals to escape 

out.  Mortality in vented traps was about one-third that of unvented because of a reduction in 

sublegal blue crab catch (Arcement and Guillory, 1993). The size of blue swimming crabs 

and species can be selective and efficient when appropriate combination of mesh size at 

slope net (entrance net) and escape vents is used for the box-shaped collapsible pot. 
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Chapter 6 

Simulated ghost fishing experiment for collapsible crab pot in Thailand 

 

6.1 Introduction 

 Ghost fishing can be defined as the ability of fishing gear to continue fishing after all 

control of that gear is lost by the fisherman (Smolowitz, 1978a). It refers to derelict fishing 

gears either lost or abandoned which remain their capture function in water and continue to 

induce mortality of aquatic organisms without human control (Matsuoka, 2005). Gear may 

be lost for a variety of reasons including bad weathers, bottom snags, navigational collisions, 

faulty fishing methods, abandonment, human error, vandalism, and gear failure (Laist, 1995).  

Pot ghost fishing can occur through a variety of mechanism; auto-rebaiting, rebaiting by 

other species, attraction by living conspecifics or attraction by the pot alone (Breen, 1990).  

The pot may kill through starvation of by facilitating cannibalism and predation. The ghost 

fishing mortality rate is currently an intangible and remains of significant concern to both 

fishers and fisheries managers (Jennings and Kaiser, 1988). Lost or abandoned gears have 

the potential to fish for prolonged periods (Erzuni et al., 1997; Bulltimore et al., 2001; 

Nakashima and Matsuoka, 2004) and ghost fishing accounts for between 5-30% of annual 

landings on some commercial grounds (Laist, 1995). In trap fishery of Kuwait financial 

losses due to ghost fishing may reach 3-13.5% of total catch value (Mathews et al., 1987).  

Irrespective of the fact that fishers are aware of the preceding risk factors, sustained losses 

due to ghost fishing continue to occur (Carr and Harris, 1994). The little known about the 

frequency of static gear loss of for how long such they continue to fish. The lack of 

information relating to this phenomenon results from the incidents and difficulty in 

undertaking long-term studies in a realistic manner (Bullimore et al., 2001; Matsuoka, 2005).   
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 Estimates of proportion of fishing gears lost from fleets appear to be substantial. 

Considerable numbers of pots are also lost each year from some fishing operations, although 

estimates vary greatly between different studies. For example, Kruse and Kimker estimated 

that in 1990 and 1993; 31,600 pots for king crab Paralithodes camtschaticus fishery per year 

were lost in the North American Bristol Bay, whereas Paul et al. (1994) and Stevens (1996) 

estimated that losses from the same fishery were 20,000 and 70,000 pots per year 

respectively. Breen (1987) estimated that 11% of traps used in Dungeness crab Cancer 

magister fishery of British Columbia are lost in each year. Overall ghost mortality is 

dependent upon the number of ghost traps, trap location, season, length of the ghost fishing 

period and mortality rate per trap (Guillory, 2001; Matsuoka, 2005). The mortalities 

continue until the trap deteriorates sufficiently for holes to develop in the wire mesh, 

allowing captured individuals to escape. The life expectancy of vinyl-coated wire traps 

averages 2 years or more, depending upon salinity (Shively, 1997). 

 Pots ghost fishing, possibly the best information comes from underwater 

observations of simulated lost, and the studies short to long term must be carefully 

considered (Breen, 1990). Pecci et al. (1978) reported 30% escapement in American lobsters 

entering simulated lost traps, mortality rate was 25%, observed by divers. Breen (1987) 

simulated 10 lost Dungeness crab traps in a sheltered bay for 1 year, during which 

approximately 100 crabs died in the traps and still killing the crabs at a steady rate. Moran 

and Jenke (1989) simulated lost traps for various periods from 1 to 21 days. Traps were 

observed in the field with underwater video camera (Dews et al. 1988; Moran and Jenke, 

1989) partly to examine possible ghost fishing. 

 Collapsible pot targeting blue swimming crab Portunus pelagicus (Fig. 6.1) has 

recently becomes a major type of fishing gear and operated over year in the Gulf of Thailand.  

Small scale fishermen operate their pots inshore with the numbers of 200-300 pots/boat 
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while commercial scale fishermen operate further (offshore) with the numbers of 2,000-

5,000 pots onboard. Both fishing types have possibilities to loss their pots at sea. According 

to the fishermen interview (Authors, unpublished), inshore fishermen may loss pots mainly 

as a result of float line either cut or sink due to tangle with others pot owners or other gears 

(particularly crab bottom gillnets) and some push net boats that conduct inshore (illegally) 

while offshore grounds lost pots as a result of trawlers activity. The ghost fishing effects on 

the blue swimming crab and other animals from the pot fishing in Thailand have been not 

evaluated and reported.  

 This study was undertaken by simulated lost collapsible pots to quantify the catch 

rate and estimate ghost fishing mortality of organism numbers, describe changes in catch 

rate over a year, and record any deterioration in the integrity of the simulated pots in a small 

scale fishing ground (inshore) in the upper Gulf of Thailand. 

 

   

     (a)       (b) 

Fig. 6.1  Collapsible pot with the size of 36×54×19 cm (a), and blue swimming crab,   

   Portunus pelagicus (b). 
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6.2 Materials and methods 

 6.2.1 Site selection 

 The study site was located at coastal area of Sriracha Fisheries Research Station, 

Kasetsart University, Chonburi Province, in the upper gulf of Thailand (Fig. 6.2(a)). It is the 

green mussel sea farming of the station as well as a fishing ground for small scale crab pot 

fishermen, about 0.8 km from shore with the depth of 4-6 m, and the substratum composed 

of sand mix mud.   

 

 

 
 

   (a)      (b) 

Fig. 6.2  (a) Study site (   ) where the simulated pots were set the deployment, and (b)  

    positions of each pot;  No. 1, 3, 5, 7, 10 and 12 set under the edge rafts; No. 2, 6, 8 

    and 11 set between the rafts, and No. 4 and 9 set beside the huts. 
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 6.2.2 Experiment Protocol 

 Twelve new collapsible crab pots were obtained from a fisherman for simulating the 

lost gear in the study site. The pots have box-shaped, dimensions of 360×540×190 mm with 

2 slit entrances (Fig. 6.1-a), frame structure made from galvanized iron and covered with 

green polyethylene square-shaped (modified from diamond-shaped) of 38 mm mesh size, 

and the hook was attached at the top panel for pot set up and collapse function. 

 The 12 simulated pots were deployed individually either between or under the edge 

of the green mussel rafts and beside the huts around the site as shown in Fig. 6.2-b, and 

marked with surface buoys on 26 April 2006 at the study site. Each pot was attached to a 

polypropylene rope by using 10-12 m length, and anchored with 20 kg cement block, baited 

(only the first deployment) with a trevally Selaroides leptolepis by piercing with the wire 

and bounded at the center of bottom pot panel. 

 

 6.2.3 Data recording 

 Observations on each pot were conducted by scuba diving in the day time to monitor 

the situation of each pot after the deployment as either every day or 2 days for the first week, 

then once a week for the first month, and about once a month afterward up to 369 days (30 

Apr 2007) since the initial deployment. Each dive in each pot recorded the bait and pots 

conditions, identified the entire species, estimated the size, and observed their behavior and 

condition (e.g. active, exhaust, hurt). The estimates of entrapped animals length and 

condition recording for individual species from previous monitoring were observed to 

distinguish new animal from the old entrapped. 
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 6.2.4 Data analysis 

 During the simulation, entire animals of each pot were recorded and separated the 

new catch from old. The animals were identified following Allen (2000) and Matchacheep 

(2004), commercial and non-commercial were categorized. Catch rates were calculated as 

the number of newly recorded animals entrapped of each pot, then combined to determine 

the total catch on each consecutive sampling occasion. Season was also examined the effect 

to the catch.  Because the inter-sample period and number of pots varied throughout the 

simulate experiment, the catch data were expressed as Catch-Pet-Unit-Effort (CPUE) data 

with the following formula (Bullimore et al., 2001); 

CPUE   =   Nj/(Ep(tj-ti)) 

  Where Nj   = number of newly caught animals,  

   Ep   = number of pots available, and 

   tj-ti  = days interval since the previous observation (ti).  

 Catch rate does not provide an indication of the total actual mortality of individuals 

associated with the ghost fishing pots.  Mortality was confirmed when diving observed the 

dead bodies remain of individuals in the pot.  The mortality of a species is denoted as 

(Matsuoka, 2005); 

Nm = Eg × m,  

where Eg is the number of ghost fishing gear in the fishing ground, and m is the mortality 

rate per gear during a unit period of time. The m was monitored on dead bodies of animals 

underwater or can be estimated as; 

m = ne × km,  

where ne is the number of animal entering into pots by a species in a unit period of time, and 

the km is the death rate out of ne.  We used only catches (all species) of the first monitoring 

(27 Apr 2006, day 1) to analyze the escapement and mortality rate because the observations 
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were more frequent in beginning month until 35 days after initial deployment, which we 

could investigate the cause (escaped or dead) of reduced numbers of animals inside the pots, 

and assumed that all escaped animals survived. The days that entire animal escaped or dead 

were recorded, thus we were able to find the relation between the mortality rate when the 

time passed until day 34. Based on the derivable relation, quantify the mortality of newly 

animals captured per pot per month were estimated and cumulated the mortalities up to 

approximately 1 year after initial deployment. 

 

6.3 Results 

 The fish bait within pots was either consumed or decomposed completely in 3 days, 

by day 2 fragments were observed in 8 of 12 pots, and by day 4 had no any remnants of the 

bait. 

 Throughout 369 days of the experiment, 22 different species entered the simulated 

lost pots and were identified as shown in Table 6.1. The pots entrapped 224 animals in total 

which were classified as commercial catch 50.9 % (114 animals, 16 species) and as by-catch 

49.1 % (no marketable value, 110 animals, 6 species) by number. Of the bycatch, toad fish 

and sea urchin dominated, comprised 52.7% (n = 58) and 36.4 % (n = 40) respectively. The 

entire animals of each pot were recorded and the new catch separated from old, then 

combined to determine the total catch at various time intervals after first deployment as 

shown in the table. It also shows the numbers of pot available in each monitoring and the 

mean catch/pot/year of each species. The 12 pots catch minimum of 7.10 toad fish 

Batrachus grunniens, 5.62 sea urchins Diadema setosum, and 5.47 ridged swimming crabs 

Charybdis natator per pot/year. Other 19 species entrapped the pots including commercial 

species such as, spiral melongena Pugilina cochlidium, filefish Monacanthus chinensis, 

catfish Plotosus canius, etc.  During the monitoring, 1 pot lost by day 22 and further, 5 pots 
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in total lost in day 97. After that, available pot numbers reduced due to damaging from 

accumulation of fouling organisms. 

 CPUE for all animals according to the days passed throughout the simulation is 

shown in Fig. 6.3. It increased rapidly after initial deployment to a maximum rate by day 

135 and then decreased inverse with function of time afterward with accumulation of fouling 

organisms until reach a minimum by day 231, and tended to increase again until by day 369.  

Months were also categorized to examine the season effect throughout the experiment as 

shown in the figure (Fig. 6.3). Season may effect on catch rate, the CPUE showed the best 

positive result in the rainy season (May-Oct), followed with summer (Feb-Apr) and winter 

(Nov-Jan) was the least. CPUE increased in the rainy season perhaps the cause of nutrient 

abundant from rainy run off and the pots were still in good condition in beginning period. 

The CPUE increasing due to the numbers of entire animals increased while the kinds of 

species were similar (Table 6.1). The catch rate in summer was higher than winter though 

the experiment pots in summer have immersed in the study site longer and more fouling 

organisms accumulated, this result probably indicates the magnitude of ghost fishing 

impacts by season.   
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Fig. 6.3  CPUE of entrapped animals according to the days (seasons were categorized) after 

    pots deployment. 
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Table 6.1  Newly entire animals of simulated pots at various time intervals from day 1 (26 April 2006) until day 369 after initial deployment   

      (number of pots reduced from 12 to 7 by lost, then further to 5 by damaged), mean catch/pot/year calculated from sum of the total new 

      entry divided by the number of available pots at each interval monitoring 

 
Monitoring date 27 

Apr 

28 30 

 

4 

May 

10 

 

18 

 

31 13 

Jun 

2 

Jul 

1 

Aug 

8 

Sep 

26 

Oct 

30 

Nov 

13 

Dec 

29 

Jan 

16 

Feb 

29 

Mar 

30 

Apr 

 

  Days from initial deployment   

  1  2 4 

 

8 14 22 35 48 67 97 135 183 218 231 278 296 337 369 

 

  Number of pots available 

Common name Species 12 12 12 12 12 11 10 10 9 7 7 7 7 7 6 5 5 5 

 

Mean 

catch 

/pot/year 

1. Toad fish Batrachus 

grunniens 

1 1 4 4 2 2 5 8 6 3 4 5 3 1 4 1 2 2 7.10 

2. Sea urchin Diadema setosum 0 0 0 0 0 1 1 3 1 4 12 7 7 0 2 0 1 1 5.62 

3. Ridged  

    swimming crab* 

Charybdis natator 6 3 0 1 7 5 1 4 4 1 1 7 0 0 1 0 2 4 5.47 

4. Spiral  

    melongena* 

Pugilina 

cochlidium 

2 1 3 0 1 2 1 3 1 1 3 0 0 0 0 0 0 0 1.85 

5. Chinese  

    filefish* 

Monacanthus  

chinensis 

1 1 0 4 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1.33 

6. Catfish* Plotosus canius 0 0 0 0 0 1 2 2 2 0 2 0 1 0 0 0 0 0 1.14 

7. Brittle star Ophiotrix sp. 0 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 2 0 1.11 

8. Mangrove  

    stone crab* 

Myomenippe 

hardwickii 

1 1 0 0 1 0 2 0 2 2 0 0 0 0 0 0 0 0 0.96 
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Table 6.1  (Continue) 

 
9.   Red soldier  

      fish 

Holocentrus 

rubrum 

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0.49 

10. Emperor* Lethrinus sp. 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.35 

11. Whiptail* Pentapodus 

setosus 

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0.28 

12. Hermit crab Calibanarius 

longitarsus 

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0.24 

13. White-spotted  

      spinefoot* 

Siganus oramin 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0.21 

14. Synaptid  

      sea cucumber 

Leptosynapta sp. 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 

15. Pink shrimp* Metapenaeus sp. 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.14 

16. Spider crab Dorippe dorsipes 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.14 

17. Ponyfish Leiognathus sp. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.11 

18. Sergeant  

      Major* 

Abudefduf 

vaigiensis  

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.10 

19. Wrasse Halichoeres sp. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.09 

20. Grunter* Terapon sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 

21. Octopus* Octopus sp. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 

22. Silver biddy* Gerres sp. 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 

 Total 14 8 10 11 11 12 15 23 18 17 25 21 13 1 7 1 9 8 27.16 

 

* Indicates those animals are commercial category 
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 Throughout the experiment, divers observed that some animal species were always 

resident in the pots because previously observed animals were frequently observed on 

subsequent monitoring dive, such as toad fish, sea urchin and filefish, but some of them for 

example brittle star, mangrove stone crab and red soldier fish, entrapped by occasionally. 

And if the observation intervals were long (about 1 month) divers always found only new 

catches in the pots, this finding demonstrated that as animals died or escaped they were 

replaced by new catches. The relation of CPUE according to the days elapsed after pots 

initial deployment for each entrapped animals (top 10 species) is shown in Fig. 6.4.  

 The entry rate (CPUE) does not indicate the total mortality of animals associated 

with the ghost fishing pots. We were able to confirm the mortality with monitoring dead 

bodies of the entrapped animals remained. According to diving observation of the catches by 

day 1 (27 Apr 2006) subsequently, the catches were examined that 4 individuals escaped 

from the pots by 3 days (Table 6.2); 2 ridge swimming crabs (one escaped by day 1, another 

one by day 3) and 1 grunter (escaped by day 1), we assumed that all of escaped animals 

survived. The all remainders dead in the pots (confirmed by dead bodies or fragments 

remained) with the different day, e.g. we found the first dead body of a ridged swimming 

crab by day 3, the filefish by day 13, and the toad fish by day 35. Those results showed the 

entire animals of 21.4 % escaped while 78.6% dead in the pots by 34 days as shown in the 

Table 6.2. Mortality rate (cumulative dead numbers) in pots according to the days elapsed 

after initial entrapped of the observed catches (day 1) can be expressed by the following 

equation (Fig. 6.5); 

y = 0.3133Ln(x) – 0.2775, R2 = 0.98, 

where y = mortality rate, and x = time by days 

 We assumed that the escapement and mortality of others newly catches were same 

with the day 1 catches. Based on the equation above, the mortality of each newly catches for 
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each interval monitoring was estimated and showed the result per pot/month as in Table 6.3. 

The day 1 catches were dead 0.92 individual/pot/month, and the accumulated mortality 

indicates that each pot killed animals 19.0 individuals/pot/year. This finding takes no 

account of animals that may have entered and dead in the pots (or dead after escaped) 

without being observed by diving. 

 Pots conditions and some phenomena since day 1 after initial deployment until day 

369 have shown in Fig. 6.6. The pots started rusty at frame structures by day 4 and further 

when the time passed, however their structures integrity throughout of approximately 1 year 

study. The first damage on mesh was found in the day 14 at the bottom side panel since the 

pot scratching with sea floor. Divers sometimes observed the entire animals exhausted, hurt, 

or attempted to escape from the pots (e.g. Fig. 6.6-c). The first completely damaged pot (no 

more function) was found in day 278, because fouling organisms particularly green mussels 

attached and grew up until the entrances (slope nets) were closed and no animal could enter.  

Another one pot completely was damaged since the covered nets were cut and holed by the 

organisms together with pot scratching due to buoy rope entangled with anchor rope of the 

mussel raft until became big holes and allowed all captured animal to escape out. Five of 12 

pots tended to remain their capture function in the second year after original deployment 

(Table 6.1 and Fig. 6.3). 
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Table 6.2  The escape and mortality analysis of the catches by day 1 (27 Apr) after the  days 

       passed (examined from the monitoring by day 1, 3, 7, 13, 21 and 34 after initial 

       entrapped) 

 

               The catch by day 1 No. of animals Days after initial entrapped 

Common name No. Escaped Dead Escaped Dead 

Ridged swimming crab 6 2 4 1, 3 3, 7(2), 13 

Emperor 1 0 1  - 7 

Filefish 1 0 1  - 13 

Mangrove stone crab 1 0 1  - 13 

Spiral melongena 2 0 2  - 13, 21 

Whiptail 1 0 1  - 21 

Toad fish 1 0 1  - 34 

Banded grunter 1 1 0 1  - 

Total 14 3 11   

% escapement 21.43     

% mortality 78.57     
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Table 6.3  Mortality estimations (per pot/month) of newly catches at various time  

      monitoring intervals based on the derived equation   

 

Day(s) after 

deployment 

No. of 

pots 

No. of newly 

catches 

No. of mortality from the estimation, 

y = 0.3133Ln(x) - 0.2775 

   By day 30 after 

entrapped 

Per pot per 

month 

Cumulative 

mortality 

1 12 14 11.03 0.92 0.92 

2 12 8 6.30 0.53 1.44 

4 12 10 7.88 0.66 2.10 

8 12 11 8.67 0.72 2.82 

14 12 11 8.67 0.72 3.55 

22 11 12 9.46 0.86 4.41 

35 10 15 11.82 1.18 5.59 

48 10 23 18.13 1.81 7.40 

67 9 18 14.19 1.58 8.98 

97 7 17 13.40 1.91 10.89 

135 7 25 19.70 2.81 13.71 

183 7 21 16.55 2.36 16.07 

218 7 13 10.25 1.46 17.53 

231 7 1 0.79 0.11 17.65 

278 6 7 5.52 0.92 18.57 

296 5 1 0.79 0.16 18.72 

337 5 9 7.09 1.42 20.14* 

 

* Indicate the mortality per pot per year (catches by day 369 was excluded due to they  

   were the second year catch). 
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Fig. 6.4  CPUE of top ten entire species according to the days after pots deployment. 
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Fig. 6.5  Relationship between mortality rate and the days after initial entrapped (analyzed 

    from the day 1 catches); y = 0.3133Ln(x) – 0.2775, R2 = 0.98. 

 

 

       
    (a) 1 day    (b) 14 days   (c) 22 days 

 

       
    (d) 135 days    (e) 231 days   (f) 369 days 

 

Fig. 6.6  Pot conditions and some phenomena after deployment since day 1 until 1 year  

   approximately, (a) pot and bait by day 1, (b) toadfish and ridged swimming crab    

   inside the pot by day 14, (c) alive wrasse pushed through the mesh to escape out, 

   (d) pot and red soldier fish by day 135 which the CPUE reached the maximum, (e) 

   pot and filefish inside by day 231, and (e) pot with fouling organisms by day 369. 
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6.4 Discussion 

 The results of simulation pots demonstrate that lost pots can continue to entrap 

animals including the commercial species for several months after initial bait within has 

been consumed or decomposed. Some pots still have potential to function more than 1 year 

with the integrity of them throughout the study (Breen, 1987; Matsuoka, 1999; Bullimore, 

2001; Al-Masroori et al., 2004). 

 The fish bait within pots was either consumed or decomposed completely by 3 days.  

This finding similar with Al-Masroori et al. (2004) that observed the bait within their trials 

traps in Oman was consumed within averages of 3 days, but different from Bullimore et al. 

(2001) who conducted the experiment in UK and reported the initial bait was exhausted after 

day 27. This probably reflects differences of the oceanographic conditions of the regions 

particularly seawater temperature. In the simplest form of ghost fishing, trapped animals die 

in lost traps and their bodies act as bait (Von Brandt 1984) to attract new fish which 

eventually die until the pot deteriorates. The dead animals in our pots perhaps provide food 

and attract the others become trapped. Hence, the catch rate increased after deployment.  

The initial bait was completely consumed within 3 days, if entire animals dead, they 

decayed and acted as bait luring more others into the pots. Thereafter, continuous cycle of 

capture, decay and attraction for as long as the gear remains intact (Carr et al., 1990; Kaiser 

et al., 1996). Many species were entrapped, the pots may be rebaited by species other than 

the target species and can attract the others to entrap. According to the observations, divers 

saw some entire animals were eating the dead body in pots, this observation concurs with 

those in related studies (Kaiser et al., 1996). Alaska king crab are rebaited when Pacific 

halibut or Pacific cot enter and die (High and Worlund, 1979). In crustaceans, cannibalism 

of newly molted individuals may occur. Pecci et al. (1978) observed this in simulated lost 
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American lobster traps, Demory (1971) observed this phenomenon for Dungeness crabs 

Cancer magister entered.   

 Toad fish, sea urchin and ridged swimming crab dominate the catches since they 

have been the resident species. Animals with small number of CPUE such as brittle star, 

mangrove stone crab, red soldier, etc., entered the pots by occasions. The CPUE increased 

up to 135 days then decreased afterward, this trend showed particularly with the dominated 

catches. After reached the maximum level, the catch rate declined together with seasonal 

change and fouling organism accumulation on pots. Catches in pots may affected by the 

identity of the initial occupants. In the first period, pots were still in good condition, it was 

possible that the CPUE increased not only from rebaiting mechanism but also the attraction 

of occupied animals inside, thus perhaps the reasons of increasing the catch rate with similar 

species. Some species of fish are attracted to live conspecifics in un-baited pots (Munro, 

1974). Fish and crustaceans continue to enter simulated lost pots even without bait, this may 

also much effect to the increased catch rate and supported those presented by High and 

Worlund (1979) who reported that king crabs continue to enter un-baited pots for up to 16 

days. Dungeness crabs empty traps months after simulated trap loss (Breen, 1987). Munro 

(1983) describes fish traps that catch fish un-baited. Juvenile reef fishes in Florida use traps 

as shelter (Sutherland et al., 1983). For such pots an auto-rebaiting mechanism is not 

necessary for ghost fishing to occur (Breen, 1990). However, in some cases, dead animals 

repel conspecifics, Hancock (1974) presented evidence that the crabs Cancer pagurus were 

not attracted to trap bait with the crabs Carcinus maeanas. For some species, conspecific 

repellency may prevent or reduce ghost fishing (Breen, 1990). Miller and Addison (1995) 

found that the presence of American lobsters within a pot deters entry of smaller crab 

species. Similarly, the presence of recently molted brown crabs within pots deterred entry of 

conspecifics (Addison, 1995). The catch rate decreased after 135 days, because in shallow 



 

 81

water organisms are rapidly overgrown with encrusting biota that makes the pots more 

visible and reduces their fishing capabilities (Erzini et al., 1997). 

 Seasonality is also an important factor in ghost fishing (Stevens, et al., 2000). Our 

experiment pots showed the best catch rate in rainy season as a result of rich nutrients 

abundant that run off to the coastal sea in this season. Besides, the pots also were deployed 

in the beginning of this season, hence they still were in good condition to keep functions.  

Breen (1987) found vary crab numbers in pots at different times of the year and 

recommended that a study must be conducted all year round to obtain the best estimate of 

crab ingress rate. Guilory (1993) reported the recruitment of blue crabs associated to ghost 

pots, mortality and escapement all varied seasonally. Baited snow crab traps lost during the 

spring fishing season may not continue to catch snow crab after reaching their saturation 

levels (Miller, 1979). However, once a lost trap reaches its saturation level, captured 

individuals will die due to cannibalism and predation lowering the saturation level.  

Although the number of newly-captured is negligible after the spring fishing season, the 

catch increases again to its saturation level before the following spring, which reinitiates a 

ghost fishing cycle (Hebert et al., 2001).   

 We were able to confirm mortality only for the day 1 catches (0.92 

individuals/pot/month and 78% of entrapped animals dead in pots). Since the dead bodies 

were completely either decomposed or consumed by few days, hence shortening the day 

intervals for subsequent monitoring was recommended. High turnover rates can lead to high 

capture and mortality rate; 2/3 of blue crabs entering traps died or escaped within 2 weeks 

(Guillory, 1993). There is a temporary balances between catch and escape rate (Munro, 

1974; Dew et al., 1988; Bullimore et al., 2001). Thus is not possible to estimate mortality 

from a single observation of recovered traps because the number of crabs in the trap 

represents a balance of continuous ingress, egress, and mortality rates (Steven et al., 2000).  
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Pual et al. (1994) found only a 10% mortality rate in Tanner crabs during a 90-d starvation 

period in laboratory conditions, but they found 100% mortality of those crabs during the 

140-d post-starvation period when crabs were offered unlimited food. Breen (1987) studied 

clearly demonstrates that entry, escapement, and mortality rates of crabs in lost pots is a 

dynamic process. He showed that unbaited traps caught Dungeness crab at the same rate one 

year after being lost, and estimated that lost traps caught 17 Dungeness crabs per year, 

which almost half (9.3) died, and the remainders escaped. It must be noted that mortality 

rate (m, km) and ne change according to the time after the gear loss (Matsuoka, 1999). It was 

also reported the catch and m changed complicatedly together with, seasons, elapsed time, 

and associated ghost fishing species (Vienneau and Moriyasu, 1994; Stevens at al., 2000; 

Bullimore et al., 2001). Most experiments to find m were conducted with test animals which 

were initially put in a gear by researchers for subsequent monitoring (e.g. Kimker, 1994), 

however this method is applicable only to animals which are sufficiency resistant to stress 

and less damages by handling (Matsuoka, 2005). 

 In our simulated pots, the entire animal escapement by 34 days was low (21.43 %) 

while mortality was high (78.57%) when compare with the other reports (e.g. Pecci et al., 

1978; Breen, 1985; Guillory, 1993; Kimker, 1994), perhaps due to different of species and 

design of pot. Ghost-fishing potential varies for different fisheries and pot designs. Parrish 

and Kazama (1992) found that the majority of lobsters were able to escape traps, whereas 

parlor-type traps lead to mortalities of 12-25% for American lobster (Smolowitz, 1978b).  

Vazquez Archdale et al. (2007) showed the evidence that, by 7 days there was no crabs 

(Portunus pelagicus and Charybdis japonica) escaped from collapsible box-shaped pots 

with the tight slit entrances (similar with our experiment pots) but 100% of the crabs 

escaped from the dome shaped. Even when animals manage to escape from ghost fishing 

traps, they may die as a result of their confinements. High and Worlund (1979) 
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demonstrated this effect experimentally for Alaska king crabs. According to our estimations, 

entire animals were killed 20.1 individuals/pot/year, seem to be low mortality, that was 

because it excluded the animals that may have entered and dead in the pots or dead after 

escaped without being observed by the diving. Besides, our study site is not an intensive 

fishing ground, impacts on intensive ground may be more serious if the pot ghost fishing 

occurred. The pots lost in offshore fishing ground (deeper water) which are less damaged by 

waves and less fouled biologically may continue ghost fishing longer than inshore site (Carr 

et at., 1990; Kaiser et al., 1996; Matsuoka, 2005). 

 It is noted that the blue swimming crab, target species (of fishermen who use this 

gear) was not entrapped in any throughout the experiment. An explanation is, probably as 

the result that they can eat the bait from outside. The initial bait was pierced and attached at 

the center of bottom pot panel, and completely either consumed or decayed within 3 days. If 

there is no crab entrapped the pots by the first 3 days, opportunity to catch might be much 

decreased. Even though animals in pots die and act as new bait luring the crab into but the 

bait is not fixed, sea current can flow the bait to pot side panel, consequently the crab can 

feed from outside. Authors have observed such the crab behavior in laboratory tank 

(Authors, unpublished). 

 The pots are constructed with more durable materials and have a rigid structure.  

Consequently, they can ghost fish for much longer periods than nets. Pots for P. pelagicus in 

Australia were estimated to ghost fish for more than 4 years (Sumpton, 2003). Divers 

observed some fish and crabs hard attemped to push through the mesh to escape from the 

pots, e.g. the wrasse in Fig. 6.6(c), similar findings were reported by Bullimore et al. (2001) 

and Al-Masroori (2004). As those results, escape panels or biodegradable materials are 

recommended. The escape panels have been introduced to reduce negative impacts from 

ghost fishing (Pecci at al, 1878; Smolowitz, 1978a; Breen 1987; Arcement and Guillory, 



 

 84

1993; Al-Masroori, 2004). Regardless of the phase of fishing, the use of such vents is a 

conservation practice that must be encouragement in pot fisheries (Smolowitz, 1978b). 

Incorporation of sub-legal gaps into the construction of traps could also prevent retention of 

under-sized finfish or shellfish (Al-Masroori et al., 2004). Future studies should be carried 

out to investigate the number of ghost fishing pot in the fishing ground (number of 

fisherman, number of operation, gear loss rate etc.). Some more complete assessments of 

ghost fishing will be required estimates for rate ingress, egress, as well as mortality rate, 

specifically investigate that determine and confirm the level of impacts according to the 

seasonal change. Eventually, calculate potential economic loss to the fishery sector and test 

the solution by using the escape vents aimed for reducing the ghost fishing negative impacts.  
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